Меню
Бесплатно
Главная  /  Бизнес  /  Плотность вероятности распределения гаусса задается формулой. Нормальный закон распределения случайных величин

Плотность вероятности распределения гаусса задается формулой. Нормальный закон распределения случайных величин

Нормальное распределение - наиболее часто встречающийся вид распределения. С ним приходится встречаться при анализе погрешностей измерений, контроле технологических процессов и режимов, а также при анализе и прогнозировании различных явлений в биологии , медицине и других областях знаний.

Термин «нормальное распределение» применяется в условном смысле как общепринятый в литературе, хотя и не совсем удачный. Так, утверждение, что какой-то признак подчиняется нормальному закону распределения, вовсе не означает наличие каких-либо незыблемых норм, якобы лежащих в основе явления, отражением которого является рассматриваемый признак, а подчинение другим законам распределения не означает какую-то анормальность данного явления.

Главная особенность нормального распределения состоит в том, что оно является предельным, к которому приближаются другие распределения. Нормальное распределение впервые открыто Муавром в 1733 году. Нормальному закону подчиняются только непрерывные случайные величины. Плотность нормального закона распределения имеет вид .

Математическое ожидание для нормального закона распределения равно . Дисперсия равна .

Основные свойства нормального распределения.

1. Функция плотности распределения определена на всей числовой оси Ох , то есть каждому значению х соответствует вполне определённое значение функции.

2. При всех значениях х (как положительных, так и отрицательных) функция плотности принимает положительные значения, то есть нормальная кривая расположена над осью Ох .

3. Предел функции плотности при неограниченном возрастании х равен нулю, .

4. Функция плотности нормального распределения в точке имеет максимум .

5. График функции плотности симметричен относительно прямой .

6. Кривая распределения имеет две точки перегиба с координатами и .

7. Мода и медиана нормального распределения совпадают с математическим ожиданием а .

8. Форма нормальной кривой не изменяется при изменении параметра а .

9. Коэффициенты асимметрии и эксцесса нормального распределения равны нулю.

Очевидна важность вычисления этих коэффициентов для эмпирических рядов распределения, так как они характеризуют скошеннность и крутость данного ряда по сравнению с нормальным.

Вероятность попадания в интервал находится по формуле , где нечётная табулированная функция.

Определим вероятность того, что нормально распределённая случайная величина отклоняется от своего математического ожидания на величину, меньшую , то есть найдём вероятность осуществления неравенства , или вероятность двойного неравенства . Подставляя в формулу, получим

Выразив отклонение случайной величины Х в долях среднего квадратического отклонения, то есть положив в последнем равенстве, получим .


Тогда при получим ,

при получим ,

при получим .

Из последнего неравенства следует, что практически рассеяние нормально распределённой случайной величины заключено на участке . Вероятность того, что случайная величина не попадёт на этот участок, очень мала, а именно равна 0,0027, то есть это событие может произойти лишь в трёх случаях из 1000. Такие события можно считать практически невозможными. На приведённых рассуждениях основано правило трёх сигм , которое формулируется следующим образом: если случайная величина имеет нормальное распределение, то отклонение этой величины от математического ожидания по абсолютной величине не превосходит утроенного среднего квадратического отклонения .

Пример 28 . Деталь, изготовленная автоматом, считается годной, если отклонение её контролируемого размера от проектного не превышает 10 мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону распределения со средним квадратическим отклонением мм и математическим ожиданием . Сколько процентов годных деталей изготавливает автомат?

Решение. Рассмотрим случайную величину Х - отклонение размера от проектного. Деталь будет признана годной, если случайная величина принадлежит интервалу . Вероятность изготовления годной детали найдём по формуле . Следовательно, процент годных деталей, изготавливаемых автоматом, равен 95,44%.

Биномиальное распределение

Биномиальным является распределение вероятностей появления m числа событий в п независимых испытаниях, в каждом из которых вероятность появления события постоянна и равна р . Вероятность возможного числа появлений события вычисляется по формуле Бернулли: ,

где . Постоянные п и р , входящие в это выражение, параметры биномиального закона. Биномиальным распределением описывается распределение вероятностей дискретной случайной величины.

Основные числовые характеристики биномиального распределения. Математическое ожидание равно . Дисперсия равна . Коэффициенты асимметрии и эксцесса равны и . При неограниченном возрастании числа испытаний А и Е стремятся к нулю, следовательно, можно предположить, что биномиальное распределение сходится к нормальному с возрастанием числа испытаний.

Пример 29 . Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А в одном испытании, если дисперсия числа появлений в трёх испытаниях равна 0,63.

Решение. Для биномиального распределения . Подставим значения, получим отсюда или тогда и .

Распределение Пуассона

Закон распределения редких явлений

Распределение Пуассона описывает число событий m , происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью. При этом число испытаний п велико, а вероятность появления события в каждом испытании р мала. Поэтому распределение Пуассона называют законом редких явлений или простейшим потоком. Параметром распределения Пуассона является величина , характеризующая интенсивность появления событий в п испытаниях. Формула распределения Пуассона .

Пуассоновским распределением хорошо описываются число требований на выплату страховых сумм за год, число вызовов, поступивших на телефонную станцию за определённое время, число отказов элементов при испытании на надёжность, число бракованных изделий и так далее.

Основные числовые характеристики для распределения Пуассона. Математическое ожидание равно дисперсии и равно а . То есть . Это является отличительной особенностью этого распределения. Коэффициенты асимметрии и эксцесса соответственно равны .

Пример 30 . Среднее число выплат страховых сумм в день равно двум. Найти вероятность того, что за пять дней придётся выплатить: 1) 6 страховых сумм; 2) менее шести сумм; 3) не менее шести.распределение.

Это распределение часто наблюдается при изучении сроков службы различных устройств, времени безотказной работы отдельных элементов, частей системы и системы в целом, при рассмотрении случайных промежутков времени между появлениями двух последовательных редких событий.

Плотность показательного распределения определяется параметром , который называют интенсивностью отказов . Этот термин связан с конкретной областью приложения - теорией надёжности.

Выражение интегральной функции показательного распределения можно найти, используя свойства дифференциальной функции:

Математическое ожидание показательного распределения , дисперсия , среднее квадратическое отклонение . Таким образом, для этого распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию. При любом значении параметра коэффициенты асимметрии и эксцесса - постоянные величины .

Пример 31 . Среднее время работы телевизора до первого отказа равно 500 часов. Найти вероятность того, что наудачу взятый телевизор проработает без поломок более 1000 часов.

Решение. Так как среднее время работы до первого отказа равно 500, то . Искомую вероятность найдём по формуле .

Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.

Определение. Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса ) с параметрами а и σ 2 , если ее плотность вероятности f (x ) имеет вид :

. (6.19)

Кривую нормального закона распределения называют нормальной или гауссовой кривой . На рис. 6.5 а), б) показана нормальная кривая с параметрами а и σ 2 и график функции распределения.

Обратим внимание на то, что нормальная кривая симметрична относительно прямой х = а , имеет максимум в точке х = а , равный , и две точки перегиба х = а σ с ординатами .

Можно заметить, что в выражении плотности нормального закона параметры распределения обозначены буквами а и σ 2 , которыми мы обозначали математическое ожидание и дисперсию. Такое совпадение не случайно. Рассмотрим теорему, которая устанавливает теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины Х, распределенной по нормальному закону, равно параметру a этого распределения , т.е.

М (Х ) = а , (6.20)

а ее дисперсия – параметру σ 2 , т.е.

D (X ) = σ 2 . (6.21)

Выясним, как будет меняться нормальная кривая при изменении параметров а и σ .

Если σ = const, и меняется параметр a (а 1 < а 2 < а 3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 6.6).

Рис. 6.6

Рис. 6.7

Если а = const и меняется параметр σ , то меняется ордината максимума кривой f max (a ) = . При увеличении σ ордината максимума уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс. При уменьшении σ , напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков (рис. 6.7).

Таким образом, параметр a характеризует положение, а параметр σ – форму нормальной кривой.

Нормальный закон распределения случайной величины с параметрами a = 0 и σ = 1 называется стандартным или нормированным , а соответствующая нормальная кривая – стандартной или нормированной .

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, связана с тем, что интеграл от функции нормального распределения не выражается через элементарные функции. Однако его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или . Такую функцию называют функцией Лапласа , для нее составлены таблицы. Существует много разновидностей такой функции, например:

, .

Мы будем использовать функцию

Рассмотрим свойства случайной величины, распределенной по нормальному закону.

1. Вероятность попадания случайной величины Х, распределенной по нормальному закону, в интервал [α , β ] равна

Вычислим по этой формуле вероятности при различных значениях δ (используя таблицу значений функции Лапласа):

при δ = σ = 2Ф(1) = 0,6827;

при δ = 2σ = 2Ф(2) = 0,9545;

при δ = 3σ = 2Ф(3) = 0,9973.

Отсюда вытекает так называемое «правило трех сигм »:

Если случайная величина Х имеет нормальный закон распределения с параметрами a и σ, то практически достоверно, что ее значения заключены в интервале (a – 3σ ; a + 3σ ).

Пример 6.3. Полагая, что рост мужчин определенной возрастной группы есть нормально распределенная случайная величина Х с параметрами а = 173 и σ 2 = 36, найти:

1. Выражение плотности вероятности и функции распределения случайной величины Х ;

2. Долю костюмов 4-го роста (176 – 183 см) и долю костюмов 3-го роста (170 – 176 см), которые нужно предусмотреть в общем объеме производства для данной возрастной группы;

3. Сформулировать «правило трех сигм» для случайной величины Х .

1. Находим плотность вероятности

и функцию распределения случайной величины Х

= .

2. Долю костюмов 4-го роста (176 – 182 см) находим как вероятность

Р (176 ≤ Х ≤ 182) = = Ф(1,5) – Ф(0,5).

По таблице значений функции Лапласа (Приложение 2 ) находим:

Ф(1,5) = 0,4332, Ф(0,5) = 0,1915.

Окончательно получаем

Р (176 ≤ Х ≤ 182) = 0,4332 – 0,1915 = 0,2417.

Долю костюмов 3-го роста (170 – 176 см) можно найти аналогично. Однако проще это сделать, если учесть, что данный интервал симметричен относительно математического ожидания а = 173, т.е. неравенство 170 ≤ Х ≤ 176 равносильно неравенству │Х – 173│≤ 3. Тогда

Р (170 ≤Х ≤176) = Р (│Х – 173│≤ 3) = 2Ф(3/6) = 2Ф(0,5) = 2·0,1915 = 0,3830.

3. Сформулируем «правило трех сигм» для случайной величины Х:

Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от а – 3σ = 173 – 3·6 = 155 до а + 3σ = 173 + 3·6 = 191, т.е. 155 ≤ Х ≤ 191. ◄


7. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Как уже говорилось при изучении случайных величин, невозможно заранее предсказать, какое значение примет случайная величина в результате единичного испытания – это зависит от многих причин, учесть которые невозможно.

Однако при многократном повторении испытаний характер поведения суммы случайных величин почти утрачивает случайный характер и становится закономерным. Наличие закономерностей связано именно с массовостью явлений, порождающих в своей совокупности случайную величину, подчиненную вполне определенному закону. Суть устойчивости массовых явлений сводится к следующему: конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате массы таких явлений; случайные отклонения от среднего, неизбежные в каждом отдельном явлении, в массе взаимно погашаются, нивелируются, выравниваются.

Именно эта устойчивость средних и представляет собой физическое содержание «закона больших чисел», понимаемого в широком смысле слова: при очень большом числе случайных явлений их результат практически перестает быть случайным и может быть предсказан с большой степенью определенности.

В узком смысле слова под «законом больших чисел» в теории вероятностей понимается ряд математических теорем, в каждой из которых для тех или иных условий устанавливается факт приближения средних характеристик большого числа опытов к некоторым определенным постоянным.

Закон больших чисел играет важную роль в практических применениях теории вероятностей. Свойство случайных величин при определенных условиях вести себя практически как не случайные позволяет уверенно оперировать этими величинами, предсказывать результаты массовых случайных явлений почти с полной определенностью.

Возможности таких предсказаний в области массовых случайных явлений еще больше расширяются наличием другой группы предельных теорем, касающихся уже не предельных значений случайных величин, а предельных законов распределения. Речь идет о группе теорем, известных под названием «центральной предельной теоремы». Различные формы центральной предельной теоремы различаются между собой теми условиями, для которых устанавливается это предельное свойство суммы случайных величин.

Различные формы закона больших чисел с различными формами центральной предельной теоремы образуют совокупность так называемых предельных теорем теории вероятностей. Предельные теоремы дают возможность не только осуществлять научные прогнозы в области случайных явлений, но и оценивать точность этих прогнозов.

Нормальное распределение. Функция нормального распределения. Функция Лапласа. Числовые характеристики нормального распределения. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трех сигм. Распределения, связанные с нормальным: распределения Стьюдента, Пирса и Фишера. Характеристическая функция нормального распределения.

8. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

8.1. Функция нормального распределения

Одним из наиболее часто встречающихся распределений является нормальное распределение. Оно играет большую роль в теории вероятностей и ее приложениях. Фундаментальная роль, которую играет нормальное распределение, объясняется тем, что суммы случайных величин с ростом числа слагаемых при довольно широких предположениях ведут себя асимптотически нормально (см. тему "Центральная предельная теорема").

Плотность функции нормального распределения имеет вид

Функция нормального распределения имеет вид

. (8.2)

Однако часто вместо функции нормального распределения используется функция Лапласа.

Пусть a =0, =1, то получим

. (8.3)

Такая функция называется стандартным нормальным распределением . Запишем данную функцию в следующем виде

.

Поскольку F 0 (+)=1, то в силу симметрии первое слагаемое равно 0,5, а второе слагаемое есть функция Лапласа

. (8.4)

Таким образом,

.

Отсюда получаем равенство

, (8.5)

связывающее функцию нормального распределения и функцию Лапласа.

Для стандартного нормального распределения и функции Лапласа существуют обширные таблицы. Однако здесь нужно иметь в виду, что иногда вместо рассмотренных функций используют функции

. (8.6)

или интеграл ошибок

. (8.7)

Замечание. Открытие нормального распределения связано с именами К. Гаусса и П. Лапласа , у которых оно впервые появилось связи с исследованием по теории ошибок и методу наименьших квадратов. Поэтому нормальное распределение называют еще распределением Лапласа-Гаусса , или просто распределением Гаусса или Лапласа .

Найдем математическое ожидание нормального распределения:

.

Вычислим дисперсию:

.

Таким образом,

M[X] = a , D[X] =  2 ,

т.е. нормальное распределение характеризуется двумя параметрами: a , имеющему смысл математического ожидания, и , имеющему смысл среднего квадратичного отклонения.

Рис. 8.1

График плотности функции нормального распределения имеет следующий вид (кривая Гаусса ). Максимум будет при x=a , точки перегиба в точках a – и a +. Кривая симметрична относительно прямой x=a . С уменьшением  кривая становится все более островершинной.

8.2. Вероятность попадания нормально распределенной случайной величины в заданный интервал

Известно, что если случайная величина X задана плотностью распределения f(x ), то вероятность того, что X примет значение, принадлежащее интервалу (,), имеет вид

.

В случае нормального распределения эта формула примет следующий вид

. (8.8)

Часто требуется вычислить вероятность того, что отклонение случайной величины X по абсолютной величине меньше заданного положительного числа , т.е. требуется найти вероятность осуществления неравенства |X–a |<. Заметим, что неравенство равносильным ему двойным неравенством a –a +. Тогда

.

Таким образом,

. (8.9)

В частности, если , то

P(|X–a |<) = 2(1) = 0,6827;

если 2, то

P(|X–a |<2) = 2(2) = 0,9545;

если , то

P(|X–a |<3) = 2(3) = 0,9973.

Последнее равенство показывает, что во многих практических вопросах при рассмотрении нормального распределения можно пренебречь возможностью отклонения случайной величины от a больше, чем 3 Это есть т.н. правило "трех сигм" .

Например, каждому кто занимался измерениями, встречался с ситуацией, когда появляется "дикое значение" . В связи с этим возникает проблема: исключать это значение или его следует оставить. Так, при разработке норматива времени для изготовления одной детали проделали следующие измерения: 5,0; 4,8; 5,2; 5,3; 5,0; 6,1. Последнее число сильно отличается от других. В связи с этим возникает вопрос, не скрыта ли здесь ошибка в измерениях. Вычислим среднее значение
и среднее квадратичное отклонение =0,46. После этого построим "трехсигмовый" интервал: (4,84; 6,61). Поскольку значение x =6,1 не выходит за пределы трехсигмовой зоны, то его нельзя считать "диким".

Другой пример. На конвейере изготовляются детали. На основании статистических данных контроля деталей вычисляют среднее квадратичное отклонение . Затем строят прямую средней линии, окаймленную трехсигмовой полосой. Если точки контрольных измерений находятся внутри трехсигмовой полосы, то технологический процесс следует считать стабильным и качество продукции высоким. Если точки близки к контрольным линиям, но не выходят за пределы трехсигмовой зоны, то это указывает на разладку технологического процесса. Если же точки выходят за пределы трехсигмовой зоны, то это означает, что идет брак.

Пример 8.1. Автомат изготовляет шарики. Шарик считается годным, если отклонение диаметра шарика X от проектного по абсолютной величине не превышает 0,7 мм . Считая, что случайная величина X распределена нормально со средним квадратичным отклонением 0,4 мм , определить, сколько процентов годных шариков изготовляет автомат.

Решение. Поскольку =0,4 мм и =0,7 мм , то

Следовательно, автомат изготовляет 92% годных деталей.

8.3. Распределения, связанные с нормальным

8.3.1. Распределение Пирсона ( 2 -распределение)

Пусть независимые случайные величины U 1 , U 2 , …, U k описываются стандартным нормальным распределением: U i =N (0,1). Тогда распределение суммы квадратов этих величин

называется распределением  2 ("хи-квадрат" ) с k степенями свободы . В явном виде плотность функции этого распределения имеет вид

(8.11)

где
– гамма-функция; в частности, (n +1)=n !.

Рис. 8.2

Распределение Пирсона определяется одним параметром – числом степеней свободы k . Графики этой функции изображены на рис. 8.2. Числовые характеристики распределения Пирсона:

Если случайные величины  2 (k 1) и  2 (k 2) независимы, то

Отметим, что с увеличением числа степеней свободы распределение Пирсона постепенно приближается к нормальному.

8.3.2. Распределение Стьюдента (t-распределение)

Пусть U –стандартная нормально распределенная случайная величины, U =N (0,1), а  2 – случайная величина, имеющая  2 -распределение с k степенями свободы, причем U и  2 независимые величины. Тогда распределение величины

(8.12)

называется распределением Стьюдента (t- распределением ) с k степенями свободы . В явном виде плотность функции распределения Стьюдента имеет вид

Рис. 8.3

(8.13)

График этой функции изображен на рис. 8.3.

Числовые характеристики распределения Стьюдента:

Отметим, что с возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному.

8.3.3. Распределение Фишера (F-распределение)

Пусть  2 (k 1) и  2 (k 2) – независимые случайные величины, имеющие  2 -распределение соответственно с k 1 и k 2 степенями свободы. Распределение величины

(8.14)

называется распределением Фишера (F- распределением ) со степенями свободы k 1 и k 2 . В явном виде плотность распределения Фишера имеет вид

(8.15)

График этой функции изображен на рис. 8.4.

Числовые характеристики распределения Фишера:

О

Рис. 8.4

тметим, что между случайными величинами, имеющими нормальное распределение, распределение Пирсона, Стьюдента и Фишера, имеют место соотношения:

8.4*. Характеристическая функция нормального распределения

Пусть случайная величина  распределена по стандартному нормальному распределению. Тогда для характеристической функции получим

.

Делая замену y=x–it , получим

Из теории функций комплексной переменной известно, что

.

Поэтому окончательно получаем
.

Как мы видели, если случайная величина  распределена по стандартному нормальному закону, то случайная величина =t +m распределена но нормальному закону с параметрами m и . Тогда характеристические функции f  (t ) и f  (t ) связаны по свойству 2 соотношением

,

или, окончательно получаем, что характеристическая функция для нормального распределения имеет вид

. (8.16)

Случайная величина называется распределенной по нормальному (Гауссовскому) закону с параметрами аи () , если плотность распределения вероятностей имеет вид

Величина, распределенная по нормальному закону, всегда имеет бесчисленное множество возможных значений, поэтому ее удобно изображать графически, с помощью графика плотности распределения. Согласно формуле

вероятность того, что случайная величина примет значение из интервала равна площади под графиком функции на этом интервале (геометрический смысл определенного интеграла). Рассматриваемая функция неотрицательна и непрерывна. График функ­ции имеет вид колокола и называется кривой Гаусса или нормальной кривой.

На рисунке изображено несколько кривых плотности распределения случайной величины, заданной по нормальному закону.

Все кривые имеют одну точку максимума, при удалении от которой вправо и влево кривые убывают. Максимум достигается при и равен .

Кривые симметричны относительно вертикальной прямой, проведенной через наивысшую точку. Площадь подграфика каждой кривой равна 1.

Различие отдельных кривых распределения состоит лишь в том, что суммарная площадь подграфика, одна и та же для всех кривых, различным образом распределена между различными участками. Основная часть площади подграфика любой кривой сосредоточена в непосредственной близости наивероятнейшего значения , а это значение у всех трех кривых разное. При различных значениях и а получаются различные нормальные законы и различные графики плотности функции распределения.

Теоретические исследования показали, что большинство встречающихся на практике случайных величин имеет нормальный закон распределения. По этому закону распределяется скорость газовых молекул, вес новорожденных, размер одежды и обуви населения страны и много других случайных событий физической и биологической природы. Впервые эту закономерность заметил и теоретически обосновал А. Муавр.

При , функция совпадает с функцией , о которой уже шла речь в локальной предельной теореме Муавра–Лапласа. Плотность вероятности нормального распределения легко выражаетсячерез :

При таких значениях параметров нормальный закон называется основным .

Функция распределения для нормированной плотности называется функцией Лапласа и обозначается Φ(х) . Мы также уже встречались с этой функцией.

Функция Лапласа не зависит от конкретных параметров а и σ. Для функции Лапласа, с помощью методов приближенного интегрирования составлены таблицы значений на проме­жутке с разной степенью точности. Очевидно, что функция Лапласа является нечетной, следовательно, нет необходимости помещать в таблицу ее значения при отрицательных .



Для случайной величины, распределенной по нормальному закону с параметрами а и , математическое ожидание и дисперсия вычисляются по формулам: , .Среднее квадратическое отклонение равно .

Вероятность того, что нормально распределенная величина примет значение из интервала , равна

где есть функция Лапласа, введенная в интегральной предельной теореме.

Часто в задачах требуется вычислить вероятность того, что отклонение нормально распределенной случайной величины X от своего математического ожидания по абсолютной величине не превосходит некоторого значения , т.е. вычислить вероятность . Применяя формулу (19.2), имеем:

В заключение приведем одно важное следствие из формулы (19.3). Положим в этой формуле . Тогда , т.е. вероятность того, что абсолютная величина отклонения X от своего математического ожидания не превысит , равна 99,73%. Практически такое событие можно считать достоверным. В этом и состоит сущность правила трех сигм.

Правило трех сигм. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания практически не превосходит утроенного среднего квадратического отклонения.

Закон нормального распределения вероятностей непрерывной случайной величины занимает особое место среди различных теоретических законов, т. к. является основным во многих практических исследованиях. Им описывается большинство случайных явлений, связанных с производственными процессами.

К случайным явлениям, подчиняющимся нормальному закону распределения, относятся ошибки измерений производственных параметров, распределение технологических погрешностей изготовления, рост и вес большинства биологических объектов и др.

Нормальным называют закон распределения вероятностей непрерывной случайной величины, который описывается дифференциальной функцией

a - математическое ожидание случайной величины;

Среднее квадратичное отклонение нормального распределения.

График дифференциальной функции нормального распределения называют нормальной кривой (кривой Гаусса) (рис.7).

Рис. 7 Кривая Гаусса

Свойства нормальной кривой (кривой Гаусса):

1. кривая симметрична относительно прямой x = a;

2. нормальная кривая расположена над осью X, т. е. при всех значениях X функция f(x) всегда положительна;

3. ось ox является горизонтальной асимптотой графика, т. к.

4. при x = a функция f(x) имеет максимум равный

,

в точках A и B при и кривая имеет точки перегиба, ординаты которых равны.

При этом, вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит среднего квадратичного отклонения , равна 0,6826.

в точках E и G, при и , значение функции f(x) равно

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит удвоенного среднего квадратичного отклонения, равна 0,9544.

Асимптотически приближаясь к оси абсцисс, кривая Гаусса в точках C и D, при и , очень близко подходит к оси абсцисс. В этих точках значение функции f(x) очень мало

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит утроенного среднего квадратичного отклонения, равна 0,9973. Это свойство кривой Гаусса называется "правило трех сигм ".



Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Изменение величины параметра a (математического ожидания случайной величины) не изменяет форму нормальной кривой, а приводит лишь к ее смещению вдоль оси X: вправо, если a возрастает, и влево, если a убывает.

При a=0 нормальная кривая симметрична относительно оси ординат.

Изменение величины параметра (среднего квадратичного отклонения) изменяет форму нормальной кривой: с возрастанием ординаты нормальной кривой убывают, кривая растягивается вдоль оси X и прижимается к ней. При убывании ординаты нормальной кривой увеличиваются, кривая сжимается вдоль оси X и становится более "островершинной".

При этом, при любых значениях и площадь ограниченная нормальной кривой и осью X, остается равной единице (т. е. вероятность того, что случайная величина, распределенная нормально, примет значение ограниченное на оси X нормальной кривой, равна 1).

Нормальное распределение с произвольными параметрами и , т. е. описываемое дифференциальной функцией

называется общим нормальным распределением .

Нормальное распределение с параметрами и называется нормированным распределением (рис. 8). В нормированном распределении дифференциальная функция распределения равна:

Рис. 8 Нормированная кривая

Интегральная функция общего нормального распределения имеет вид:

Пусть случайная величина X распределена по нормальному закону в интервале (c, d). Тогда вероятность того, что X примет значение, принадлежащее интервалу (c, d) равна

Пример. Случайная величина X распределена по нормальному закону. Математическое ожидание и среднее квадратичное отклонение этой случайной величины равны a=30 и . Найти вероятность того, что X примет значение в интервале (10, 50).

По условию: . Тогда

Пользуясь готовыми таблицами Лапласа (см. приложение 3), имеем.