Меню
Бесплатно
Главная  /  Истории успеха  /  Open Library - открытая библиотека учебной информации. Математические понятия Что является чем математические понятия

Open Library - открытая библиотека учебной информации. Математические понятия Что является чем математические понятия

Лекция 5. Математические понятия

1. Объем и содержание понятия. Отношения между понятиями

2. Определœение понятий. Определяемые и неопределяемые понятия.

3. Способы определœения понятий.

4. Основные выводы

Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнения и др. Третью группу составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.

Чтобы изучать всœе разнообразие понятий, нужно иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли , отражающую объекты (предметы и явления) в их существенных и общих свойствах. Языковой формой понятия является слово (термин) или группа слов.

Составить понятие об объекте - ϶ᴛᴏ значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная состоит по сути в том, что математические объекты, о которых крайне важно составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. К примеру, в геометрии изучают форму и размеры предметов, не принимая во внимание другие свойства: цвет, массу, твердость и т.д. От всœего этого абстрагируются. По этой причине в геометрии вместо слова «предмет» говорят «геометрическая фигура».

Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира , математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. К примеру, общее понятие функции как соответствия является обобщением понятий конкретных функции, ᴛ.ᴇ. абстракцией от абстракций.

  1. Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определœенными свойствами. К примеру, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.

Среди свойств объекта различают существенные и несущественные . Свойство считают существенным для объекта͵ если оно присуще этому объекту и без него он не может существовать . К примеру, для квадрата существенными являются всœе свойства, названные выше. Несущественно для квадрата АВСD свойство «сторона АВ горизонтальна».

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду всœе геометрические фигуры, являющиеся квадратами. Считают, что множество всœех квадратов составляет объем понятия «квадрат».

Вообще, объем понятия - ϶ᴛᴏ множество всœех объектов, обозначаемых одним термином.

Любое понятие имеет не только объем, но и содержание.

Рассмотрим, к примеру, понятие «прямоугольник».

Объем понятия - ϶ᴛᴏ множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.

Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот . Так, к примеру, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («всœе стороны равны», «диагонали взаимно перпендикулярны» и др.).

Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. По этой причине важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.

Отношения между понятиями тесно связаны с отношениями между их объемами, ᴛ.ᴇ. множествами.

Условимся понятия обозначать строчными буквами латинского алфавита: а, b, c, d, …, z.

Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.

В случае если А ⊂ В (А ≠ В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.

К примеру, если а – «прямоугольник», b – «четырехугольник», то их объемы А и В находятся в отношении включения (А ⊂ В и А ≠ В), в связи с этим всякий прямоугольник является четырехугольником. По этой причине можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».

В случае если А = В, то говорят, что понятия А и В тождественны.

К примеру, тождественны понятия «равносторонний треугольник» и «равнобедренный треугольник», так как их объемы совпадают.

Рассмотрим подробнее отношение рода и вида между понятиями.

1. В первую очередь, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. К примеру, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».

2. Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди указанных можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».

3. В-третьих, видовое понятие обладает всœеми свойствами родового понятия. К примеру, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всœеми свойствами, присущими прямоугольнику.

Так как объем понятия – множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.

Установим, к примеру, отношения между следующими парами понятий а и b, если:

1) а – «прямоугольник», b – «ромб»;

2) а – «многоугольник», b – «параллелограмм»;

3) а – «прямая», b – «отрезок».

Отношения между множествами отображены на рисунке соответственно

2. Определœение понятий . Определяемые и неопределяемые понятия.

Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определœение.

Определœением обычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введенных понятий. К примеру, прямоугольник можно определить так: «Прямоугольником принято называть четырехугольник, у которого всœе углы прямые». В этом определœении есть две части – определяемое понятие (прямоугольник) и определяющее понятие (четырехугольник, у которого всœе углы прямые). В случае если обозначить через а первое понятие, а через b – второе, то данное определœение можно представить в таком виде:

а есть (по определœению) b.

Слова «есть (по определœению)» обычно заменяют символом ⇔, и тогда определœение выглядит так:

Читают: «а равносильно b по определœению». Можно прочитать эту запись еще и так: «а тогда и только тогда, когда b.

Определœения, имеющие такую структуру, называются явными . Рассмотрим их подробнее.

Обратимся ко второй части определœения «прямоугольник».

В нем можно выделить:

1) понятие «четырехугольник», ĸᴏᴛᴏᴩᴏᴇ является родовым по отношению к понятию «прямоугольник».

2) свойство «иметь всœе углы прямые», ĸᴏᴛᴏᴩᴏᴇ позволяет выделить из всœевозможных четырехугольников один вид – прямоугольники; в связи с этим его называют видовым отличием.

Вообще видовое отличие - ϶ᴛᴏ свойства (одно или несколько), которые позволяют выделить определяемые объекты из объема родового понятия.

Итоги нашего анализа можно представить в виде схемы:

Знак «+» используется как замена частица «и».

Нам известно, что любое понятие имеет объем. В случае если понятие а определœено через род и видовое отличие, то о его объеме – множестве А – можно сказать, что в нем содержатся такие объекты, которые принадлежат множеству С (объему родового понятия с) и обладают свойством Р:

А = {х/ х ∈ С и Р(х)}.

Так как определœение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина для замены какой-либо совокупности известных терминов, то об определœении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но, формулируя определœения, придерживаются ряда правил. Назовем их.

1. Определœение должно быть соразмерным . Это означает, что объемы определяемого и определяющего понятий должны совпадать.

2. В определœении (или их системе) не должно быть порочного круга . Это означает, что нельзя определять понятие через само себя.

3. Определœение должно быть ясным . Требуется, к примеру, чтобы значения терминов, входящих в определяющее понятие, были известны к моменту введения определœения нового понятия.

4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному . Так, квадрат можно определить как:

а) прямоугольник, у которого сосœедние стороны равны;

б) прямоугольник, у которого диагонали взаимно перпендикулярны;

в) ромб, у которого есть прямой угол;

г) параллелограмм, у которого всœе стороны равны, а углы прямые.

Различные определœения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определœение включаются только некоторые. И тогда из возможных определœений выбирают одно, исходят из того, какое из них проще и целœесообразнее для дальнейшего построения теории.

Назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определœение знакомого понятия или построить определœение нового:

1. Назвать определяемое понятие (термин).

2. Указать ближайшее родовое понятие (по отношению к определяемому) понятие.

3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е сформулировать видовое отличие.

4. Проверить, выполнены ли правила определœения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).

Лекция 5. Математические понятия

1. Объем и содержание понятия. Отношения между понятиями

2. Определение понятий. Определяемые и неопределяемые понятия.

3. Способы определения понятий.

4. Основные выводы

Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнения и др. Третью группу составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.

Чтобы изучать все разнообразие понятий, надо иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли , отражающую объекты (предметы и явления) в их существенных и общих свойствах. Языковой формой понятия является слово (термин) или группа слов.

Составить понятие об объекте – это значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие свойства: цвет, массу, твердость и т.д. От всего этого абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».

Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира , математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. Например, общее понятие функции как соответствия является обобщением понятий конкретных функции, т.е. абстракцией от абстракций.

  1. Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.



Среди свойств объекта различают существенные и несущественные . Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать . Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата АВСD свойство «сторона АВ горизонтальна».

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».

Вообще, объем понятия – это множество всех объектов, обозначаемых одним термином.

Любое понятие имеет не только объем, но и содержание.

Рассмотрим, например, понятие «прямоугольник».

Объем понятия – это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.

Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот . Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.).

Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.

Отношения между понятиями тесно связаны с отношениями между их объемами, т.е. множествами.

Условимся понятия обозначать строчными буквами латинского алфавита: а, b, c, d, …, z.

Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.

Если А ⊂ В (А ≠ В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.

Например, если а – «прямоугольник», b – «четырехугольник», то их объемы А и В находятся в отношении включения (А ⊂ В и А ≠ В), поэтому всякий прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».

Если А = В, то говорят, что понятия А и В тождественны.

Например, тождественны понятия «равносторонний треугольник» и «равнобедренный треугольник», так как их объемы совпадают.

Рассмотрим подробнее отношение рода и вида между понятиями.

1. Во-первых, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. Например, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».

2. Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди указанных можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».

3. В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.

Так как объем понятия – множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.

Установим, например, отношения между следующими парами понятий а и b, если:

1) а – «прямоугольник», b – «ромб»;

2) а – «многоугольник», b – «параллелограмм»;

3) а – «прямая», b – «отрезок».

Отношения между множествами отображены на рисунке соответственно

2. Определение понятий . Определяемые и неопределяемые понятия.

Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.

Определением обычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введенных понятий. Например, прямоугольник можно определить так: «Прямоугольником называется четырехугольник, у которого все углы прямые». В этом определении есть две части – определяемое понятие (прямоугольник) и определяющее понятие (четырехугольник, у которого все углы прямые). Если обозначить через а первое понятие, а через b – второе, то данное определение можно представить в таком виде:

а есть (по определению) b.

Слова «есть (по определению)» обычно заменяют символом ⇔, и тогда определение выглядит так:

Читают: «а равносильно b по определению». Можно прочитать эту запись еще и так: «а тогда и только тогда, когда b.

Определения, имеющие такую структуру, называются явными . Рассмотрим их подробнее.

Обратимся ко второй части определения «прямоугольник».

В нем можно выделить:

1) понятие «четырехугольник», которое является родовым по отношению к понятию «прямоугольник».

2) свойство «иметь все углы прямые», которое позволяет выделить из всевозможных четырехугольников один вид – прямоугольники; поэтому его называют видовым отличием.

Вообще видовое отличие – это свойства (одно или несколько), которые позволяют выделить определяемые объекты из объема родового понятия.

Итоги нашего анализа можно представить в виде схемы:

Знак «+» используется как замена частица «и».

Нам известно, что любое понятие имеет объем. Если понятие а определено через род и видовое отличие, то о его объеме – множестве А – можно сказать, что в нем содержатся такие объекты, которые принадлежат множеству С (объему родового понятия с) и обладают свойством Р:

А = {х/ х ∈ С и Р(х)}.

Так как определение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина для замены какой-либо совокупности известных терминов, то об определении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но, формулируя определения, придерживаются ряда правил. Назовем их.

1. Определение должно быть соразмерным . Это означает, что объемы определяемого и определяющего понятий должны совпадать.

2. В определении (или их системе) не должно быть порочного круга . Это означает, что нельзя определять понятие через само себя.

3. Определение должно быть ясным . Требуется, например, чтобы значения терминов, входящих в определяющее понятие, были известны к моменту введения определения нового понятия.

4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному . Так, квадрат можно определить как:

а) прямоугольник, у которого соседние стороны равны;

б) прямоугольник, у которого диагонали взаимно перпендикулярны;

в) ромб, у которого есть прямой угол;

г) параллелограмм, у которого все стороны равны, а углы прямые.

Различные определения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определение включаются только некоторые. И тогда из возможных определений выбирают одно, исходят из того, какое из них проще и целесообразнее для дальнейшего построения теории.

Назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового:

1. Назвать определяемое понятие (термин).

2. Указать ближайшее родовое понятие (по отношению к определяемому) понятие.

3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е сформулировать видовое отличие.

4. Проверить, выполнены ли правила определения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).

Лекция 7. Математические понятия

1. Группы понятий, изучаемых в начальном курсе математики. Особенности математических понятий.

2. Объем и содержание понятия.

3. Отношения между понятиями.

4. Операции с понятиями: обобщение, ограничение, определение и деление понятия.

5. Правила, необходимые при формулировке определения понятий через род и видовое отличие.

6. Контекстуальные и остенсивные определения. Описание, сравнение.

Группы понятий, изучаемых в начальном курсе математики. Особенности математических понятий.

Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнение и др. Третью составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.

Как же изучать такое обилие самых разных понятий?

Прежде всего, надо иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли , отражающую объекты (предметы или явления) в их существенных и общих свойствах . Языковой формой понятия является слово или группа слов .

Составить понятие об объекте - это значит уметь отличить его от других сходных с ним объектов.

Математические понятия обладают рядом особенностей . Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие их свойства: цвет, массу, твердость и т.д. От всего этого отвлекаются, абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».



Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира, математика не только пользуется различными приемами абстрагирования , но и само абстрагирование выступает как многоступенчатый процесс. B математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. Например, общее понятие функции как соответствия является обобщением понятий конкретных функций, т.е. абстракцией от абстракций.

Чтобы овладеть общими подходами к изучению понятий в начальном курсе математики, учителю необходимы знания об объеме и содержании понятия, об отношениях между понятиями и о видах определений понятий.

2. Объем и содержание понятия

Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.

Среди свойств объекта различают существенные и несущественные .

Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата ABCD свойство «сторона AD горизонтальна». Если квадрат повернуть, то сторона AD окажется расположенной по-другому (рис. 26). Поэтому, чтобы понимать, что представляет собой данный математический объект, надо знать его существенные свойства.

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».

Любое понятие характеризуется словом, объемом и содержанием.

Объем понятия а - это множество всех объектов, которые можно назвать данным словом (термином)

Пример. Выделим объем и содержание понятия «прямоугольник».

Объем понятия - это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т. д.

Между объемом понятия и его содержанием существует взаимосвязь : если увеличивается объем понятия, то уменьшается его содержание, и наоборот. Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.).

Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.


2
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра математического анализа и методики преподавания математики
Выпускная квалификационная работа
Особенности формирования математических понятий в 5-6 классах
Выполнил:
студентка V курса математического факультета
Бельтюкова Анастасия Сергеевна
Научный руководитель:
кандидат педагогических наук, доцент, зав. кафедрой математического анализа и МПМ
М.В Крутихина
Рецензент:
кандидат педагогических наук, доцент кафедры математического анализа и МПМ И .В Ситникова
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой М.В. Крутихина
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005
Содержание
Введение 3
Глава 1 Основы методики изучения математических понятий 5
    5
    8
    9
    10
    11
    13
Глава 2 Психолого-педагогические особенности обучения математике в 5-6 классах 15
    15
    18
    22
    2.4 Особенности формирования математических понятий в 5-6 классах 28
Глава 3 Опытное преподавание 36
Заключение 44
Библиографический список 45

Введение

Понятие является одной из главных составляющих в содержании любого учебного предмета, в том числе - и математики.
Одно из первых математических понятий, с которым ребёнок встречается в школе, - понятие о числе. Если это понятие не будет усвоено, у обучаемых возникнут серьёзные проблемы при дальнейшем изучении математики.
С самого начала встреча с понятиями происходит у учащихся при изучении различных математических дисциплин. Так, начиная изучать геометрию, учащиеся сразу же встречаются с понятиями: точка, линия, угол, а далее - с целой системой понятий, связанных с видами геометрических объектов.
Задача учителя - обеспечить полноценное усвоение понятий. Однако в школьной практике данная задача решается не так успешно, как того требуют цели общеобразовательной школы.
«Главный недостаток школьного усвоения понятий - формализм», --считает психолог Н.Ф.Талызина. Суть формализма состоит в том, что учащиеся, правильно воспроизводя определение понятия, то есть, осознавая его содержание, не умеют пользоваться им при решении задач на применение этого понятия. Следовательно, формирование понятий -- это важная, акт у альная проблема.
Объект исследования: процесс формирования математических понятий в 5-6 классах.
Цел ь работы: разработать методические рекомендации для изучения математических понятий в 5-6 классах.
Задачи работы:
1. Изучить математическую, методическую, педагогическую литературу по данной теме.
2. Выявить основные способы определения понятий в учебниках 5-6 классов.
3. Определить особенности формирования математических понятий в 5-6 классах.
4. Разработать методические рекомендации формирования некоторых понятий.
Гипотеза исследования : Если в процессе формирования математических понятий в 5-6 классах учесть следующие особенности:
· понятия в большинстве своём определяются с помощью конструирования, и часто формирование правильного представления о понятии у учащихся достигается с помощью поясняющих описаний;
· вводятся понятия конкретно-индуктивным путём;
· на протяжении всего процесса формирования понятия большое внимание уделяется наглядности, то этот процесс будет более эффективным.
Методы исследования:
· изучение методической и психологической литературы по теме;
· сравнение различных учебников по математике;
· опытное преподавание.

Глава 1
Основы методики изучения математических понятий

1.1 Математические понятия, их содержание и объём, классификация понятий

Понятие - форма мышления о целостной совокупности существенных и несущественных свойств объекта.

Математические понятия имеют свои особенности: они часто возникают из потребности науки и не имеют аналогов в реальном мире; они обладают большой степенью абстракции. В силу этого желательно показать учащимся возникновение изучаемого понятия (либо из потребности практики, либо из потребности науки).

Каждое понятие характеризуется объёмом и содержанием. Содержание - множество существенных признаков понятия. Объём - множество объектов, к которым применимо данное понятие. Рассмотрим связь между объёмом и содержанием понятия. Если содержание соответствует действительности и не включает противоречивых признаков, то объём - это не пустое множество, что важно показать учащимся при введении понятия. Содержание вполне определяет объём и наоборот. Значит, изменение одного влечёт изменение другого: если содержание увеличивается, то объём уменьшается.

Содержание понятия отождествляется с его определением, а объём раскрывается через классификацию. Классификация - деление множества на подмножества, которые удовлетворяют следующим требованиям:

o должно проводится по одному признаку;

o классы должны быть не пересекающимися;

o объединение всех классов должно давать всё множество;

o классификация должна быть непрерывной (классами должны быть ближайшие видовые понятия по отношению к понятию, которое подлежит классификации).

Выделяют следующие виды классификации:

1. По видоизмененному признаку. Объекты, подлежащие классификации, могут обладать несколькими признаками, поэтому можно классифицировать по-разному.

Пример. Понятие «треугольник».

2. Дихотомический. Деление объёма понятия на два видовых понятия, одно из которых обладает данным признаком, а другое нет.

Пример.

2

Выделим цели обучения классификации:

1) развитие логического мышления;

2) изучая видовые отличия, мы составляем более ясное представление о родовом понятии.

Оба вида классификации используются в школе. Как правило, сначала дихотомический, а затем по видоизменённому признаку.

1.2 Определение математических понятий, первичные понятия, поясняющие описание

Определить объект - выбрать из его существенных свойств такие и столько, чтобы каждое из них было необходимым, а все вместе достаточными для отличия этого объекта от других. Результат этого действия фиксируется в определении.

Определением считается такая формулировка, которая сводит новое понятие к уже известным понятиям этой же области. Такое сведение не может продолжаться бесконечно, поэтому наука имеет первичные понятия , которые определяются не явно, а косвенно (через аксиомы). Список первичных понятий неоднозначен, по сравнению с наукой, в школьном курсе первичных понятий намного больше. Основной приём для разъяснения, введения первичных понятий - составление родословных.

В школьном курсе не всегда целесообразно давать понятиям строгое определение. Иногда достаточно сформировать правильное представление. Это достигается с помощью пояс няющих описаний - доступных для учащихся предложений, которые вызывают у них один наглядный образ, и помогают усвоить понятие. Здесь не ставится требование сведения нового понятия к ранее изученным. Усвоение должно быть доведено до такого уровня, чтобы в дальнейшем, не вспоминая описания, ученик мог узнать объект, относящийся к данному понятию.

1.3 Способы определения понятий

По логической структуре определения делятся на конъюнктивные (существенные признаки соединяются союзом "и") и дизъюнктивные (существенные признаки соединяются союзом "или").

Выделение существенных признаков, зафиксированных в определении, и зафиксированных связей между ними называется логико-математическим анализом определения .

Существует подразделение определений на дескриптивные и конструктивные.

Дескриптивные - описательные или косвенные определения, имеющие, как правило, вид: «объект называется…, если он обладает…». Из таких определений не следует факт существования данного объекта, поэтому все подобные понятия требуют доказательства существования. Среди них выделяют следующие способы определений понятий:

· Через ближайший род и видовое отличие. (Ромбом называется параллелограмм, две смежные стороны которого равны. Родовым выступает понятие параллелограмма, из которого определяемое понятие выделяется посредством одного видового отличия).

· Определения-соглашения - определения, в которых свойства понятий выражаются с помощью равенств или неравенств.

· Аксиоматические определения. В самой науке математике используются часто, а в школьном курсе редко и для интуитивно ясных понятий. (Площадь фигуры - величина, численное значение которой удовлетворяет условиям: S(F)0; F 1 =F 2 S(F 1)=S(F 2); F=F 1 F 2 , F 1 F 2 = S(F)=S(F 1)+S(F 2); S(E)=1.)

· Определения через абстракцию. Прибегают к такому определению понятия, когда другое трудно или невозможно осуществить (например, натуральное число).

· Определение-отрицание - определение, в котором фиксируется не наличие свойства, а его отсутствие (например, параллельные прямые).

Конструктивные (или генетические) - это определения, в которых указывается способ получения нового объекта (например, сферой называется поверхность, полученная вращением полуокружности вокруг своего диаметра). Среди таких определений иногда выделяют рекурсивные - определения, указывающие некоторый базисный элемент какого-либо класса и правило, по которому можно получить новые объекты того же класса (например, определение прогрессии).

1.4 Методические требования к определению понятия

· Требование научности.

· Требование доступности.

· Требование соизмеримости (объём определяемого понятия должен быть равен объёму определяющего понятия). Нарушение данного требования ведёт либо к очень широкому, либо к очень узкому определению.

· Определение не должно содержать порочного круга.

· Определения должны быть ясными, точными, не содержать метафорических выражений.

· Требование минимальности.

1.5 Введение понятий в школьном курсе математики

При формировании понятий необходимо организовывать деятельность учащихся по усвоению двух основных логических приёмов: подведение под понятие и выведение следствий из факта принадлежности объекта понятию.

Действие подведения под понятие имеет следующую структуру:

1) Выделение всех свойств, зафиксированных в определении.

2) Установление логических связей между ними.

3) Проверка наличия у объекта выделенных свойств и их связей.

4) Получение вывода о принадлежности объекта объёму понятия.

Выведение следствий - это выделение существенных признаков объекта, принадлежащему данному понятию.

В методике выделяют три пути введения понятий :

1) Конкретно-индуктивный:

o Рассмотрение различных объектов как принадлежащих объёму понятия, так и не принадлежащих.

o Выявление существенных признаков понятия на основе сравнения объектов.

o Введение термина, формулировка определения.

2) Абстрактно-дедуктивный:

o Введение определения учителем.

o Рассмотрение особых и частных случаев.

o Формирование умения подводить объект под понятие и выводить первичные следствия.

При введении понятия первым путём учащиеся лучше понимают мотивы введения, учатся строить определения и понимать важность каждого слова в нём. При введении понятия вторым путём экономится большое количество времени, что тоже не маловажно.

3) Комбинированный. Используется для более сложных понятий математического анализа. На основе небольшого числа конкретных примеров даётся определение понятия. Затем путём решения задач, в которых варьируются несущественные признаки, и путём сопоставления данного понятия с конкретными примерами продолжается формирование понятия.

1.6 Основные этапы изучения понятия в школе

В литературе выделяют три основных этапа изучения понятий в школе:

1. При введении понятия используется один из трёх вышеизложенных способов. Во время данного этапа нужно учесть следующее:

· Прежде всего, необходимо обеспечить мотивацию введения данного понятия.

· При построении системы задач на подведение под понятие обеспечить наиболее полный объём понятия.

· Важно показать, что объём понятия - не пустое множество.

· Раскрыть содержание понятия, работать над существенными признаками, выделяя несущественные.

· Помимо знания определения, желательно, чтобы учащиеся имели зрительное представление о понятии.

· Усвоение терминологии и символики.

Итогом данного этапа является формулировка определения, усвоение которого - содержание следующего этапа. Усвоить определение понятия означает овладеть действиями распознавания объектов, принадлежащих понятию, выведения следствий из принадлежности объекта понятию, конструирования объектов, относящихся к объёму понятия.

2. На этапе усвоения определения продолжается работа над запоминанием определения. Достигаться это может с помощью следующих приёмов:

· Выписывание определений в тетрадь.

· Проговаривание, подчёркивание или какая-нибудь нумерация существенных свойств.

· Использование контрпримеров для выполнения правил соизмеримости.

· Подбор недостающих слов в определении, отыскание лишних слов.

· Обучение приводить примеры и контрпримеры.

· Обучение применения определения в простейших, но достаточно характерных ситуациях, так как многократное повторение определения вне решения задач неэффективно.

· Указать на возможность различных определений, доказать их эквивалентность, но для запоминания выбрать лишь одно.

· Учить конструировать определение, использовать для этого составление родословных, разъясняя логическую структуру; знакомить с правилами построения определения.

· Сходные пары понятий давать в сравнении и сопоставлении.

Таким образом, каждое существенное свойство понятия, используемое в определении, на данном этапе делается специальным объектом изучения.

3.Следующий этап - закрепление . Понятие можно считать сформированным, если учащиеся сразу узнают его в задаче без всякого перебирания признаков, то есть процесс подведения под понятие свёрнут. Достичь этого можно следующими путями:

· Применение определения в более сложных ситуациях.

· Включение нового понятия в логические связи, отношения с другими понятиями (например, сопоставление родословных, классификаций).

· Желательно показать, что определение даётся не ради его самого, а для того, чтобы оно «работало» при решении задач и построении новой теории.

Глава 2
Психолого-педагогические особенности обучения математике в 5-6 классах

2.1 Особенности познавательной деятельности

Восприятие. Школьник 5-6 классов обладает достаточным уровнем развития восприятия. У него высокий уровень остроты зрения, слуха, ориентировки на форму и цвет предмета.

Процесс обучения предъявляет новые требования к восприятию школьника. В процессе восприятия учебной информации необходимы произвольность и осмысленность деятельности учащихся. Сначала ребёнка привлекает сам предмет и в первую очередь его внешние яркие признаки. Но дети уже в состоянии сосредоточиться и тщательно рассмотреть все характеристики предмета, выделить в нём главное, существенное. Эта особенность проявляется в процессе учебной деятельности. Они могут анализировать группы фигур, упорядочивать предметы по различным признакам, проводить классификацию фигур по одному или двум свойствам этих фигур.

У школьников этого возраста появляется наблюдение как специальная деятельность, развивается наблюдательность как черта характера.

Процесс формирования понятия - постепенный процесс, на первых стадиях которого важную роль играет чувственное восприятие объекта.

Память. Школьник 5-6 классов способен управлять своим произвольным запоминанием. Способность к запоминанию (заучиванию) медленно, но постепенно возрастает.

В этом возрасте память перестраивается, переходя от доминирования механического запоминания к смысловому. При этом перестраивается сама смысловая память. Она приобретает опосредованный характер, обязательно включается мышление. Поэтому необходимо учащихся учить правильно рассуждать, чтобы процесс запоминания базировался на понимании предлагаемого материала.

Заодно с формой меняется и содержание запоминания. Становится более доступным запоминание абстрактного материала.

Внимание. Процесс овладения знаниями, умениями, навыками требует постоянного и эффективного самоконтроля учащихся, что возможно только при сформированности достаточно высокого уровня произвольного внимания.

Школьник 5-6 классов вполне может управлять своим вниманием. Он хорошо концентрирует внимание в значимой для него деятельности. Поэтому нужно поддерживать интерес школьника к изучению математики. При этом целесообразно опираться на вспомогательные средства (предметы, картинки, таблицы).

В школе на уроках внимание нуждается в поддержке со стороны учителя.

Воображение. В процессе учебной деятельности учащийся получает много описательных сведений. Это требует от него постоянного воссоздания образов, без которых невозможно понять и усвоить учебный материал, т.е. воссоздающее воображение учащихся 5-6 классов с самого начала обучения включено в целенаправленную деятельность, способствующую его психическому развитию.

При развитии у ребёнка способности управлять своей умственной деятельностью воображение становится всё более управляемым процессом.

У школьников 5-6 классов воображение может превратиться в самостоятельную внутреннюю деятельность. Они могут проигрывать в уме мыслительные задачи с математическими знаками, оперировать значениями и смыслами языка, соединяя две высшие психические функции: воображение и мышление.

Все указанные выше особенности создают почву для развития процесса творческого воображения, в котором большую роль играют специальные знания учащихся. Эти знания составляют основу для развития творческого воображения и в последующие возрастные периоды жизни школьника.

Мышление. Всё большее значение начинает приобретать теоретическое мышление, способность устанавливать максимальное количество смысловых связей в окружающем мире. Школьник психологически погружён в реальности предметного мира, образно-знаковых систем. Изучаемый в школе материал становится для него условием для построения и проверки своих гипотез.

В 5-6 классах у школьника вырабатывается формальное мышление. Школьник этого возраста уже может рассуждать, не связывая себя с конкретной ситуацией.

Учёные изучали вопрос об умственных возможностях школьников 5-6 классов. В результате исследований выявилось, что умственные возможности ребёнка шире, чем предполагалось ранее, и при создании соответствующих условий, т.е. при специальной методической организации обучения, учащийся 5-6 классов может усвоить абстрактный математический материал.

Как видно из вышеизложенного, психические процессы характеризуются возрастными особенностями, знание и учёт которых необходимы для организации успешного обучения и умственного развития учащихся.

2.2 Психологические аспекты формирования понятий

Обратимся к психологической литературе и выясним основные положения концепции формирования научных понятий.
В учебном пособии говорится о невозможности передачи понятия в готовом виде. Ребёнок может получить его лишь в результате своей собственной деятельности, направленной не на слова, а на те предметы, понятие о которых мы хотим у него сформировать.
Становление понятий - это процесс формирования не только особого образца мира, но и определённой системы действий. Действия, операции и составляют психологический механизм понятий. Без них понятие не может быть ни усвоено, ни применено в дальнейшем к решению задач. В силу этого особенности сформированных понятий не могут быть поняты без обращения к действиям, продуктом которых они являются. И необходимо формировать следующие виды действий, используемых при изучении понятий:
· Действие распознавания используется, когда понятие усваивается для распознавания объектов, относящихся к данному классу. Данное действие может быть применено при формировании понятий с конъюнктивной и дизъюнктивной логической структурой.
· Выведение следствий.
· Сравнение.
· Классификация.
· Действия, связанные с установлением иерархических отношений внутри системы понятий, и другие.
Рассматривается в также роль определения понятия в процессе его усвоения. Определение - ориентировочная основа для оценки предметов, с которыми взаимодействует обучаемый. Так, получая определение угла, ученик может теперь анализировать различные предметы с точки зрения наличия или отсутствия в них признаков угла. Такая реальная работа создаёт в голове ученика образ предметов данного класса. Таким образом, получение определения - это лишь первый шаг на пути усвоения понятия.
Второй шаг - включение определения понятия в те действия учащихся, которые они выполняют с соответствующими объектами и с помощью которых строят в своей голове понятие об этих объектах.
Третий шаг состоит в том, чтобы научить школьников ориентироваться на содержание определения при выполнении различных действий с объектами. Если это не обеспечено, то в одних случаях ученики будут опираться на свойства, которые они сами выделили в объектах, в других случаях дети могут использовать только часть указанных свойств; в-третьих - могут добавить к указанным определениям свои.
Условия, обеспечивающие управление процессом усвоения поняти й
1. Наличие адекватного действия: оно должно быть направлено на существенные свойства.
2. Знание состава используемого действия. Например, действие распознавания включает: а) актуализацию системы необходимых и достаточных свойств понятия; б) проверку каждого из них в предлагаемых объектах; в) оценку полученных результатов.
3. Представленность всех элементов действий во внешней, материальной форме.
4. Поэтапное формирование введённого действия.
5. Наличие пооперационного контроля при усвоении новых форм действия.
Н.Ф. Талызина подробно останавливается на поэтапном формировании понятий. После выполнения 5-8 заданий с реальными предметами или моделями учащиеся без всякого заучивания запоминают и признаки понятия, и правило действия. Затем действие переводится во внешнеречевую форму, когда задания даются в письменном виде, а признаки понятий, правила и предписание называются или записываются учащимися по памяти.
В том случае, когда действие легко и правильно выполняется во внешнеречевой форме, его можно перевести во внутреннюю форму. Задание даётся в письменном виде, а воспроизведение признаков, их проверку, сравнение полученных результатов с правилом учащиеся совершают про себя. Вначале контролируется правильность каждой операции и конечного ответа. Постепенно контроль осуществляется лишь по конечному результату по мере необходимости.
Если действие выполняется правильно, то его переводят на умственный этап: учащийся сам и выполняет, и контролирует действие. Контроль со стороны обучаемого предусмотрен только за конечным продуктом действий. Помощь обучаемый получает при наличии затруднений или неуверенности в правильности результата. Процесс выполнения теперь скрыт, действие стало полностью умственным.
Так постепенно происходит преобразование действия по форме. Преобразование же по обобщённости обеспечивается специальным подбором заданий
Дальнейшее преобразование действия достигается повторяемостью однотипных заданий. Делать это целесообразно лишь на последних этапах. На всех других этапах даётся лишь такое число заданий, которое обеспечивает усвоение действия в данной форме.
Требования к содержанию и форме заданий
1. При составлении заданий следует ориентироваться на те новые действия, которые формируются.
2. Второе требование к задачам - соответствие формы этапу усвоения. Например, на первых этапах объекты, с которыми работают учащиеся, должны быть доступны для реального преобразования.
3. Количество заданий зависит от цели и сложности формируемой деятельности.
4. При подборе заданий необходимо учитывать, что преобразование действия идёт не только по форме, но и по мере обобщённости, автоматизации и т.д.
Было проведено множество экспериментов, когда реализовывались указанные условия. Во всех случаях, утверждает Н. Ф. Талызина, понятия формировались не только с заданным содержанием, но и высокими показателями по следующим характеристикам:
· разумность действий испытуемых;
· осознанность усвоения;
· уверенность учащихся в знаниях и действиях;
· отсутствие связанности чувственными свойствами предметов;
· обобщённость понятий и действий;
· прочность сформированных понятий и действий.
Итак, у ребёнка постепенно формируется определённый образ предметов данного класса. Понятие действительно нельзя дать в готовом виде, оно может быть построено только самим учеником путём выполнения определённой системы действий с предметами. Учитель помогает ученику сформировать этот образ с содержанием, опережающим существенные свойства предметов данного класса, и задаёт общественно выработанную точку зрения на предметы, с которыми работает ученик. Понятие - это продукт действий, выполняемых учеником с предметами данного класса.

2.3 Некоторые педагогические особенности обучения математике в 5-6 классах

Ведущей идеей современной концепции школьного образования является идея гуманизации, ставящая в центр процесса обучения ученика с его интересами и возможностями, требующая учёта особенностей его личности. Главными направлениями математического образования является усиление общекультурного звучания и повышение его значимости для формирования личности подрастающего человека. Основные идеи, положенные в основу курса математики 5-6 класса - это общекультурная ориентация содержания, интеллектуальное развитие учащихся средствами математики на материале, отвечающем интересам и возможностям детей 10-12 лет.

Курс математики 5-6 классов - важное звено математического образования и развития школьников. На этом этапе заканчивается в основном обучение счёту на множестве рациональных чисел, формируется понятие переменной и даются первые знания о приёмах решения линейных уравнений, продолжается обучение решению текстовых задач, совершенствуются и обогащаются умения геометрических построений и измерений. Серьёзное внимание уделяется формированию умения рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Курс математики 5-6 классов представляет собой органическую часть всей школьной математики. Поэтому основным требованием к его построению является структурирование содержания на единой идейной основе, которая, с одной стороны, является продолжением и развитием идей, реализованных при обучении математики в начальной школе, и, с другой стороны, служит последующему изучению математики в старших классах.

Продолжается развитие всех содержательно-методических линий курса начальной математики: числовой, алгебраической, функциональной, геометрической, логической, анализ данных. Они реализованы на числовом, алгебраическом, геометрическом материале.

В последнее время существенно пересмотрено изучение геометрии. Целью изучения геометрии в 5-6 классах является познание окружающего мира языком и средствами математики. С помощью построений и измерений учащиеся выявляют различные геометрические закономерности, которые формулируют как предложение, гипотезу. Доказательный аспект геометрии рассматривается в проблемном плане - учащимся прививается мысль, что экспериментальным путём можно открыть многие геометрические факты, но эти факты становятся математическими истинами только тогда, когда они установлены средствами, принятыми в математике.

Таким образом, геометрический материал в этом курсе может быть охарактеризован, как наглядно-деятельностная геометрия. Обучение организуется как процесс интеллектуально-практической деятельности, направленной на развитие пространственных представлений, изобразительных умений, расширение геометрического кругозора, в ходе которого важнейшие свойства геометрических фигур получаются посредством опыта и здравого смысла.

Достаточно новой в курсе 5-6 классов является содержательная линия «Анализ данных », которая объединяет в себе три направления: элементы математической статистики, комбинаторику, теорию вероятностей. Введение этого материала продиктовано самой жизнью. Его изучение направлено на формирование у школьников как общей вероятностной интуиции, так и конкретных способов оценки данных. Основная задача в этом звене - формирование соответствующего словаря, обучение простейшим приёмам сбора, представления и анализа информации, обучение решению комбинаторных задач перебором возможных вариантов, создание элементарных представлений о частоте и вероятности случайных событий.

Однако данная линия присутствует не во всех современных школьных учебниках для 5-6 классов. Особо подробно и ярко представлена данная линия в учебниках .

Алгебраический материал, включённый в курс математики 5-6 классов, является основой для систематического изучения алгебры в старших классах. Можно отметить следующие особенности изучения этого алгебраического материала:

1. Изучение алгебраического материала основано на научной основе с учётом возрастных особенностей и возможностей учащихся.

Формирование элементарных математических понятий младшего школьника

Е.Ю. Тогобецкая, магистрант кафедры педагогики и методик преподавания

Тольяттинский педагогический университет, Тольятти (Россия)

Ключевые слова: математические понятия, абсолютные понятия, относительные понятия, определения.

Аннотация: В школьной практике многие учителя добиваются от учеников заучивания определений понятий и требуют знания их основных доказываемых свойств. Однако результаты такого обучения обычно незначительны. Это происходит потому, что большинство учащихся, применяя понятия, усвоенные в школе, опираются на малосущественные признаки, существенные же признаки понятий ученики осознают и воспроизводят только при ответе на вопросы, требующие определения понятия. Часто учащиеся безошибочно воспроизводят понятия, то есть обнаруживают знание его существенных признаков, но применить эти знания на практике не могут, опираются на те случайные признаки, выделенные благодаря непосредственному опыту. Процессом усвоения понятий можно управлять, формировать их с заданными качествами.

Keywords: mathematical concepts, absolute concepts, relative concepts, definitions.

Annotation: In school practice many teachers achieve from pupils of learning of definitions of concepts and the knowledge of their basic proved properties demands. However results of such training are usually insignificant. It occurs because the majority of pupils, applying the concepts acquired at school, pupils lean against the unimportant signs, essential signs of concepts realise and reproduce only at the answer to the questions demanding definition of concept. Often pupils unmistakably reproduce concepts, that is find out knowledge of its essential signs, but put this knowledge into practice cannot, lean against those casual signs allocated thanks to a first-hand experience. Process of mastering of concepts it is possible to operate, form them with the set qualities.

При усвоении научных знаний учащиеся начальной школы сталкиваются с разными видами понятий. Неумение ученика дифференцировать понятия приводит к неадекватному их усвоению.

Логика в понятиях различает объем и содержание. Под объемом понимается тот класс объектов, которые относятся к этому понятию, объединяются им. Так, в объем понятия треугольник входит все множество треугольников независимо от их конкретных характеристик (видов углов, размера сторон и др.).

Под содержанием понятий понимается та система существенных свойств, по которой происходит объединение данных объектов в единый класс. Чтобы раскрыть содержание понятие, следует путем сравнения установить, какие признаки необходимы и достаточны для выделения его отношения к другим предметам. До тех пор, пока не установлены содержание и признаки, не ясна сущность предмета, отражаемого этим понятием, невозможно точно и четко отграничить этот предмет от смежных с ним, происходит путаница мышления.

Например, понятии треугольник к таким свойствам относятся следующие: замкнутая фигура, состоит из трех отрезков прямой. Совокупность свойств, по которым объединяются объекты в единый класс, называются необходимыми и достаточными признаками. В одних понятиях эти признаки дополняют друг друга, образуя вместе то содержание, по которому и объединяются объекты в единый класс. Примером таких понятий могут служить треугольник, угол, биссектриса и многие другие.

Совокупность данных объектов, на которые распространяется данное понятие, составляет логический класс объектов. Логический класс объектов - это совокупность объектов, имеющие общие признаки, вследствие чего они выражаются общим понятием. Логический класс объектов и объем соответствующего понятия совпадают.Понятия делятся на виды по содержанию и объему в зависимости от характера и количества объектов, на которые они распространяются. По объему математические понятия делятся на единичные и общие. Если в объем понятия входит только один предмет, оно называется единичным.

Примеры единичных понятий: «наименьшее двузначное число», «цифра 5», «квадрат, длина стороны которого 10 см», «круг радиусом 5 см». Общие понятие отображает признаки определенного множества предметов. Объем таких понятий всегда будет больше объема одного элемента. Примеры общих понятий: «множество двузначных чисел», «треугольники», «уравнения», «неравенства», «числа кратные 5», «учебники математики для начальной школы». По содержанию различают понятия конъюнктивные и дизъюнктивные, абсолютные и конкретные, безотносительные и относительные.

Понятия называются конъюнктивными, если их признаки взаимосвязаны и по отдельности ни один из них не позволяет опознать объекты этого класса, признаки связаны союзом «и». Например, объекты, относящиеся к понятию треугольник, обязательно должны состоять из трех отрезков прямой и быть замкнутыми.

В других понятиях отношение между необходимыми и достаточными признаками другие: они не дополняют друг друга, а заменяют. Это означает, что один признак является эквивалентом другого. Примером такого вида отношений между признаками могут служить признаки равенства отрезков, углов. Известно, что к классу равных отрезков относятся такие отрезки, которые: а) или совпадают при наложении; б) или порознь равны третьему; в) или состоят из равновеликих частей и т.д.

В данном случае перечисленные признаки не требуются все одновременно, как это имеет место при конъюнктивном типе понятий; здесь достаточно какого-то одного признака из всех перечисленных: каждый из них эквивалентен любому из остальных. В силу этого признаки связаны союзом «или». Такая связь признаков называется дизъюнкцией, а понятия соответственно называются дизъюнктивными. Важно также учитывать деление понятий на абсолютные и относительные.

Абсолютные понятия объединяют предметы в классы по определенным признакам, характеризующим суть этих предметов как таковых. Так, в понятии угол отражены свойства, характеризующие сущность любого угла как такового. Аналогично положение со многими другими геометрическими понятиями: окружность, луч, ромб и т.д.

Относительные понятия объединяют объекты в классы по свойствам, характеризующим их отношение к другим объектам. Так, в понятии перпендикулярные прямые фиксируется то, что характеризует отношение двух прямых друг к другу: пересечение, образование при этом прямого угла. Аналогично в понятии число отражено отношение измеряемой величины и принятого эталона. Относительные понятия вызывают у учащихся более серьезные трудности, чем понятия абсолютные. Суть трудностей состоит именно в том, что школь-ники не учитывают относительность понятий и оперируют с ними как с понятиями абсолютными. Так, когда учитель просит учеников изобразить перпендикуляр, то некоторые из них изображают вертикаль. Особое внимание следует уделить понятию число.

Число - это отношение того, что подвергается количественной оценке (длина, вес, объем и др.) к эталону, который используется для этой оценки. Очевидно, что число зависит как от измеряемой величины, так и от эталона. Чем больше измеряемая величина, тем больше будет число при одном и том же эталоне. Наоборот, чем больше будет эталон (мера), тем меньше будет число при оценке одной и той же величины. Следовательно, учащиеся с самого начала должны понять, что сравнение чисел по величине можно производить только тогда, когда за ними стоит один и тот же эталон. В самом деле, если, например, пять получено при измерении длины сантиметрами, а три - при измерении метрами, то три обозначают большую величину, чем пять. Если учащиеся не усвоят относительной природы числа, то они будут испытывать серьезные трудности и при изучении системы счисления. Трудности в усвоении относительных понятий сохраняются у учащихся и в средних, и даже в старших классах школы. Между содержанием и объемом понятия существует зависимость: чем меньший объем понятия, тем больше его содержание.

Например, понятие «квадрат» имеет меньший объем, чем объем понятия «прямоугольник» так как любой квадрат - это прямоугольник, но не всякий прямоугольник есть квадрат. Поэтому понятие «квадрат» имеет большее содержание, чем понятие «прямоугольник»: квадрат имеет все свойства прямоугольника и некоторые другие (у квадрата все стороны равны, диагонали взаимно перпендикулярны).

В процессе мышления каждое понятие не существует в отдельности, а вступает в определенные связи и отношения с другими понятиями. В математике важной формой связи есть родовидовая зависимость.

Например, рассмотрим понятия «квадрат» и «прямоугольник». Объем понятия «квадрат» есть частью объема понятия «прямоугольник». Поэтому первое называют видовым, а второе - родовым. В родо-видовых отношениях следует различать понятие ближайшего рода и следующие родовые ступени.

Например, для вида «квадрат» ближайшим родом будет род «прямоугольник», для прямоугольника ближайшим родом будет род «параллелограмм», для «параллелограмма» - «четырехугольник», для «четырехугольника» - «многоугольник», а для «многоугольника»- «плоская фигура».

В начальных классах впервые каждое понятие вводится наглядно, путем наблюдения конкретных предметов или практического оперирования (например, при счете их). Учитель опирается на знание и опыт детей, которые они приобрели еще в дошкольном возрасте. Ознакомления с математическими понятиями фиксируется с помощью термина или термина и символа. Такая методика работы над математическими понятиями в начальной школе не означает, что в этом курсе не используются различные виды определений.

Определить понятие - это перечислить все существенные признаки объектов, которые входят в данное понятие. Словесное определение понятия называется термином. Например, «число», «треугольник», «круг», «уравнение» - термины.

Определение решает две задачи: выделяет и отмежевывает какое-то определенное понятие от всех других и указывает те главные признаки, без которых не может существовать понятие и от которых зависят все остальные признаки.

Определение может быть более или менее глубоким. Это зависит от уровня знаний о понятии, которое означается. Чем лучшее мы его знаем, тем большая вероятность, что мы сможем дать для него лучшее определение. В практике обучения младших школьников применяются явные и неявные определения. Явные определения имеют форму равенства или совпадения двух понятий.

Например: «Пропедевтика есть вступление в любую науку». Здесь приравнивают один к одному два понятия - «пропедевтика» и «вступление в любую науку». В определении «Квадрат - это прямоугольник, у которого все стороны равны» имеем совпадение понятий. В обучении младших школьников особый интерес среди неявных определений составляют контекстуальные и остенсивные определения.

Любой отрывок из текста, будь какой контекст, в котором случается понятие, которое нас интересует, есть, в некотором понимании, неявным его определением. Контекст ставит понятие в связь с другими понятиями и тем самим раскрывает ее содержание.

Например, употребляя в работе с детьми такие выражения, как «найти значения выражения», «сравнить значение выражений 5 + а и (а - 3) 2, если а = 7», «прочитать выражения, которые являются суммами», «прочитать выражения, и потом прочитать уравнения», мы раскрываем понятие «математическое выражение» как запись, которая складывается из чисел или переменных и знаков действий. Почти все определения, с которыми мы встречаемся в повседневной жизни - это контекстуальные определения. Услышав, неизвестное слово, мы стараемся сами установить его значение на основании всего сказанного. Подобное имеет место и в обучении младших школьников. Много математических понятий в начальной школе определяются через контекст. Это, например, такие понятия, как «большой -- маленький», «какой-нибудь», «любой», «один», «много», «число», «арифметическое действие», «уравнение», «задача» и т.д.

Контекстуальные определения остаются большей частью неполными и незавершенными. Они применяются в связи с неподготовленностью младшего школьника к усвоению полного и тем более научного определения.

Остенсивные определния - это определения путем демонстрации. Они напоминают обычные контекстуальные определения, но контекстом здесь есть не отрывок какого-либо текста, а ситуация, в которой оказывается объект, обозначенный понятием. Например, учитель показывает квадрат (рисунок или бумажную модель) и говорит «Смотрите - это квадрат». Это типичное остенсивное определение.

В начальных классах остенсивные определения применяются при рассмотрении таких понятий как «красный (белый, черный и т.д.) цвет», «левый - правый», «слева направо», «цифра», «предшествующее и следующее число», «знаки арифметических действий», «знаки сравнения», «треугольник», «четырехугольник», «куб» и т.д.

На основе усвоения остенсивным путем значений слов есть возможность вводить в словарь ребенка уже вербальное значение новых слов и словосочетаний. Остенсивные определения - и только они - связывают слово с вещами. Без них язык - лишь словесное кружево, которое не имеет объективного, предметного содержания. Заметим, что в начальных классах допустимые определения наподобие «Словом «пятиугольник» мы будем называть многоугольник с пятью сторонами». Это так называемое «номинальное определение». В математике используются разные явные определения. Наиболее распространенное из них - определение через ближайший род и видовой признак. Родовидовое определение еще называют классическим.

Примеры определений через род и видовой признак: «Параллелограмм - это четырехугольник, у которого противоположные стороны параллельные», «Ромбом называется параллелограмм, стороны которого равны», «Прямоугольником называется параллелограмм, у которого углы прямые», «Квадратом называется прямоугольник, в которым стороны равны», « Квадратом называется ромб, у которого прямые углы».

Рассмотрим определения квадрата. В первом определении ближайшим родом будет «прямоугольник», а видовым признаком - «все стороны равны». В втором определении ближайший род «ромб», а видовой признак - «прямые углы». Если же взять не ближайший род («параллелограмм»), то видовых признаков квадрата будет два «Квадратом называется параллелограмм, у которого все стороны равны и все углы прямые».

В родовидовом отношении находятся понятия «сложение (вычитание, умножение, деление)» и «арифметическое действие», понятие «острый (прямой, тупой) угол» и «угол». Примеров явных родовидовых отношений среди множества математических понятий, которые рассматриваются в начальных классах, не так уже и много. Но с учетом важности определения через род и видовой признак в дальнейшем обучении желательно добиваться понимания учениками сущности определения этого вида уже в начальных классах.

Отдельные определения могут рассматривать понятие и по способу его образования или возникновения. Определение такого типа называют генетическими. Примеры генетических определений: «Угол - это лучи, которые выходят с одной точки», «Диагональ прямоугольника - отрезок, который соединяет противоположные вершины прямоугольника». В начальных классах генетические определения применяют для таких понятий, как «отрезок», «ломаная», «прямой угол», «круг». К генетическим понятиям можно отнести и определение через перечень.

Например, «Натуральный ряд чисел -- это числа 1, 2, 3, 4 и т.д.». Некоторые понятия в начальных классах вводят только через термин. Например, единицы времени год, месяц, час, минута. Есть в начальных классах понятия, которые подаются символическим языком в виде равенства, например, а 1= а, а 0=0

Из выше сказанного можно сделать вывод, что в начальных классах много математических понятий сначала усваиваются поверхностно, расплывчато. При первом ознакомлении школьники узнают только о некоторых свойствах понятий, очень узко представляют их объем. И это закономерно. Не все понятия легко усвоить. Но бесспорно, что понимание и своевременное использование учителем тех или других видов определений математических понятий - одна из условий формирования у учеников твердых знаний об этих понятиях.

Список литературы:

1. Богданович М.В. Определение математических понятий //Начальная школа 2001. - № 4 .

2. Глузман Н. А. Формирование обобщенных приемов умственной деятельности у младших школьников. - Ялта: КГГИ, 2001. - 34 с.

3. Дрозд В.Л. Урбан М.А. От маленьких проблем - к большим открытиям. //Начальная школа. - 2000. - № 5.