Меню
Бесплатно
Главная  /  Наши дети  /  Предикаты. Предикаты и кванторы Трехместный предикат

Предикаты. Предикаты и кванторы Трехместный предикат

Цель семинара:

Рассмотреть практическое применение логики предикатов.

План занятия:

Рассматривается тема логика предикатов на которую отводится 2 часа семинарских занятий.

Задача 1. Каким отношениям и функциям соответствуют следующие предикаты, определённые на множестве натуральных чисел:

1. Предикат тождества Е:N 2 →B:

E(a 1 ,a 2)=1 тогда и только тогда, когда a 1 =a 2 .

2. Предикат порядка Q:N 2 →B:

Q(a 1 ,a 2)=1 тогда и только тогда, когда a 1 ≤ a 2.

3. Предикат делимости D:N 2 →B:

D(a 1 ,a 2)=1 тогда и только тогда, когда a 1 делится на а 2 .

4. Предикат суммы S:N 3 →B:

S(a 1 ,a 2 ,a 3)=1 тогда и только тогда, когда a 1 +a 2 =a 3.

5. Предикат произведения П:N 3 →B:

П(a 1 ,a 2 ,a 3)=1 тогда и только тогда, когда a 1 *a 2 =a 3 .

Решение .

1. Двухместному предикату тождества Е-“x 1 ”=”x 2 ” взаимно однозначно соответствуют:

а) двухместное отношение R 1 – «быть равным», R 1 N 2:(a 1 ,a 2) R 1 тогда и только тогда, когда E(a 1 ,a 2)=1;

б) одноместная функция (операция) тождества f 1 (x 1)=x 2 , а именно: f 1 (x)=x, f:N→N.

2. Двухместному предикату порядка Q-“x 1 ≤ x 2 ” взаимно однозначно соответствует двухместное отношение R 2 - «быть не больше», R 2 N 2:(a 1 ,a 2) R 2 тогда и только тогда, когда Q(a 1 ,a 2)=1.

Однако функции f(x 1)=x 2 для предиката порядка Q(x 1 ,x 2) не существует, так как не выполнено условие Р"(а 1 ,а 2 ,…а n ,а n +1)=0 при одинаковых значениях переменной x 1 существует не единственно значение переменной x 2 , при котором предикат Q истинен. Например, Q(2,4)=1 и Q(2,6)=1, однако 4≠6.

3. Двухместному предикату делимости D-“x 1 делится на х 2 ” взаимно однозначно соответствует двухместное отношение R 3 - “делится”, R 3 N 2:(a 1 ,a 2) R 3 тогда и только тогда, когда D(a 1 ,a 2)=1.

Однако функции f(x 1)=x 2 для предиката делимости D(x 1 ,x 2) не существует, так как не выполнено условие Р"(а 1 ,а 2 ,…а n ,а n +1)=0, например D(6,2)=1 и D(6,3)=1, однако 2≠3.

4. Трехместному предикату суммы S- “х 1 +х 2 =х 3 ” взаимно однозначно соответствуют:

а) трёхместное отношение R 4 N 3: (a 1 ,a 2, a 3) R 4 тогда и только тогда, когда S(a 1 ,a 2 ,a 3)=1;

б) двухместная функция (операция арифметики)- сложение f 2 (x 1 ,x 2), а именно х 1 +х 2 =х 3 .

5. Трёхместному предикату произведения П- “x 1 *x 2 =x 3 ” взаимно однозначно соответствуют:

а) трёхместное отношение R 3 N 3: (a 1 ,a 2, a 3) R 5 тогда и только тогда, когда П (х 1 ,х 2 ,х 3)=1;

б) двухместная функция (операция арифметики)- умножение f 3 (x 1 ,x 2)=x 3 , а именно х 1 *х 2 =х 3.

Взаимная однозначность соответствия между S и f 2 (П и f 3), обусловлена выполнением для предиката S(П) условия Р"(а 1 ,а 2 ,…а n ,а n +1)=0 для каждой системы элементов a 1 ,a 2 N существует единственный элемент а 3 N такой, что S(a 1 ,a 2 ,a 3)=1 (соответственно для П(a 1 ,a 2 ,a 3)=1).

Задача 2. Проиллюстрировать на примере предиката делимости, определённого в задаче 1, понятия переменного высказывания, истинного высказывания, ложного высказывания.

Решение .

Предикат делимости D(x 1 ,x 2)- это переменное (двухместное) высказывание, предметной областью которого могут служить любые множества действительных чисел, например множество N.

D(6,2)- высказывание, значение которого есть истина, т.е. истинное высказывание.

D(5,2)- ложное высказывание.

D(3,х), D(х,2)- переменные (одноместные) высказывания, истинность которых зависит от того, каким числом будет замещён символ x, но D(а,1)- истинное высказывание, так как для любого элемента а N имеет место: D(а,1)=1 (любое натуральное число делится на единицу).

Задача 3. Записать формулой логики предикатов предложение, отражающее транзитивное свойство делимости целых чисел.

Решение .

Составное высказывание (предложении), являющееся формулировкой свойства транзитивности отношения делимости целых чисел.

«если а делится на b и b делится на с, то а делится на с», состоит из трёх простых высказываний D(a,b), D(b,c) и D(a,c). Следовательно, транзитивное свойство делимости можно записать в виде составного высказывания (логической формулы):

«если D(a,b) и D(b,c), то D(a,с) или (D(a,b) & D(b,c)) → D(a,c).

Задача 4. Дать словесные формулировки следующих составных высказываний (предложений):

1. S(a,b,c) & D(a,d) & D(b,d)→D(c,d), где S и D- предикаты суммы и делимости соответственно (см.пример 1);

2. D(a,b) & S(a,b,c);

3. S(a,b,c) ~ S(b,a,c);

4. P 1 ~ P 2 , где P 1 – предикат «число 3n является чётным»; Р 2 - предикат «число n является чётным».

Решение .

1. «Если каждое слагаемое a,b суммы целых чисел делится на некоторое число d, то и сумма с делится на это число»:

S(a,b,c) & D(a,d) & D(b,d)→D(c,d).

2. «Число а не делится на число b, и неверно, что их сумма равна с»: D(a,b) & S(a,b,c).

3. «От перестановки мест слагаемых a и b сумма с не меняется»- свойство коммутативности арифметической операции сложения: S(a,b,c) ~ S(b,a,c).

4. «Число 3n является чётным тогда и только тогда, когда n является чётным»: P 1 ~ P 2.

Эквивалентность может быть выражена и другими словесными формулировками, в том числе:

· «из того, что Р 1 , следует то, что Р 2 , и обратно»;

· «из того, что Р 2 , следует то, что Р 1 , и обратно»;

· «условия Р 1 необходимо и достаточно для того, чтобы Р 2 »;

· «Р 2 необходимо и достаточно, чтобы Р 1 »;

· «Р 1 , если и только если Р 2 »;

· «Р 2 , если и только если Р 1 »;

· «условия Р 1 и Р 2 эквивалентны»;

· «Р 2 тогда и только тогда, когда Р 1 » и др.

Задача 5. Пусть х определён на множестве людей М, а Р(х)- предикат «х-смертен». Дать словесную формулировку предикатной формулы

Решение .

Выражение означает «все люди смертны». Оно не зависит от переменной х, а характеризует всех людей в целом, т.е. выражает суждение относительно всех х множества М.

Задача 6. Пусть Р(х)- предикат «х-чётное число», определённый на множестве М. Дать словесную формулировку высказывания определить его истинность.

Решение .

Исходный предикат Р(х)- «х- чётное число» является переменным высказыванием: при подстановке конкретного числа вместо переменной х он превращается в простое высказывание, являющееся истинным или ложным, например при подстановке числа 5 превращается в высказывание «5-чётное число», являющееся ложным. Высказывание означает «в М существует четное число». Поскольку множество М, на котором задан предикат Р(х), не определено в условии (в таком случае говорят, что задача сформулирована не вполне корректно), доопределим М.

Пусть предикат Р(х) определён на множестве натуральных чисел N, т.е. , тогда высказывание - истинно. В общем случае высказывание истинно на любом множестве М, содержащем хотя бы одно чётное число, и ложно на любом множестве нечетных чисел.

Задача 7. Пусть N(х)- предикат «х-натуральное число». Рассмотреть варианты навешивания кванторов. Проинтерпретировать полученные высказывания и определить их истинность.

Решение .

Высказывание «все числа- натуральные» истинно на любом множестве натуральных чисел и ложно, если М содержит хотя бы одно ненатуральное число, например целое отрицательное;

Высказывание «существует натурально х» истинно на любом множестве М, содержащем хотя бы одно натуральное число, и ложно- в противном случае.

Задача 8. Записать предикатной формулой предложение «Любой человек имеет отца».

Решение .

Для построения предикатной формулы используем два предиката «х- человек» и «у- отец х» и для удобства восприятия обозначим их соответственно: ЧЕЛОВЕК (х) и ОТЕЦ (у). Тогда предложение «Любой человек имеет отца» в предикатной форме имеет вид:

Заметим, что если предикат ОТЕЦ(у,х) определён на множестве людей, то выражение «любой человек имеет отца» можно записать проще:

Задача 9. Пусть предикат Р(х,у) описывает отношение «х любит у» на множестве людей. Рассмотреть все варианты навешивания кванторов на обе переменные. Дать словесную интерпретацию полученных высказываний.

Решение .

Обозначим предикат «х любит у» через ЛЮБИТ (х,у). Предложения, соответствующие различным вариантам навешивания

ЛЮБИТ(х,у)- «для любого человека х существует человек у, которого он любит» или «всякий человек кого-нибудь любит» (рис. а);

ЛЮБИТ (х,у)- «существует такой человек у, что его любят все х» (рис. б)ж

ЛЮБИТ (х,у)- «все люди любят всех людей» (рис. в);

ЛЮБИТ (х,у)- «существует человек, который кого- то любит» (рис. г);

ЛЮБИТ (х,у)- «существует человек, который любит всех людей» (рис. д);

ЛЮБИТ (х,у)- «для всякого человека существует человек, который его любит» (рис. е).

Из приведенного выше можно сделать вывод о том, что перестановка кванторов общности и существования меняет смысл высказывания, т.е. кванторы общности и существования не обладают в общем случае свойством коммутативности.

Задача 10. Пусть Q(x,y)- предикат порядка «х≤у». Рассмотреть различные варианты квантификации его переменных. Определить истинность получаемых выражений для разных случаев интерпретации области определения М предиката, х, у М.

Решение .

Одноместный предикат от у: « для любого х имеет место х≤у». Если М- бесконечное множество неотрицательных целых чисел, то этот предикат ложен; на любом конечном множестве натуральных чисел предикат истинен в единственной точке, представляющей наибольшее число в М. При подстановке любого другого у из М этот предикат обращается в ложное высказывание;

Одноместный предикат от х: «для любого у имеет место х≤у». Если М-множество неотрицательных целых чисел, то этот предикат истинен в единственной точке х=0 и ложен при подстановке вместо х любого числа из М;

Одноместный предикат от у: «существует число в М, которое не больше у». Если М- любое непустое множество чисел, то данный предикат превращается в истинное высказывание при подстановке какого- либо у из М.

Одноместный предикат от х: « существует число в М, которое не меньше х». На любом непустом множестве М чисел данный предикат превращается в истинное высказывание при подстановке какого- либо х из М.

Высказывание « для любых х и у выполняется х≤у» ложно на любом множестве, состоящем более, чем из одного элемента, и истинно на множестве с одним элементом;

Высказывание «существуют такие х и у, что х≤у» истинно на любом непустом множестве;

Высказывание «для любого числа х существует число у, не меньше чем х» истинно на любом непустом множестве;

Высказывание «существует у такой, что для любого х х≤у»утверждает, что в М имеется единственный максимальный элемент;

Высказывание «существует х такой, что он не больше любого у» утверждает, что в М имеется единственный минимальный элемент.

Высказывание «для любого числа у существует число х, не больше, чем у» истинно на любом непустом множестве

Задача 11. Рассмотреть все возможные варианты навешивания кванторов на предикат D(х,у)- «х делится на у», определенный на множестве натуральных чисел N. Дать словесные формулировки полученных высказываний и определить их исьтинность.

Решение .

Операции навешивания кванторов приводят к следующим формулам:

Одноместный предикат «всякое натуральное число из N делится на натуральное число у из N»; истинный только для одного значения свободной переменной у=1;

Переменное высказывание «существует натуральное число, которое делится на у», истинное для любого значения свободной переменной у, взятой из множества N;

Переменное высказывание «натуральное число х делится на всякое натуральное число у», ложное для любого значения свободной переменной х, взятой из N;

Переменное высказывание «существует натуральное число, которое делит натуральное число х», истинное для любого значения свободной переменной х;

Высказывания «для любых двух натуральных чисел имеет место делимость одного на другое» ложные;

Высказывания «существуют такие два натуральных числа, что первое делится на второе», истинны;

Высказывание «существует натуральное число, которое делится на любое натуральное», ложное;

Высказывание « для всякого натурального числа найдется такое натуральное, которое делится на первое», истинное;

Окончательно получим префиксную нормальную форму для исходной предикатной формулы.

Рассмотрим предложение

Это предложение не является высказыванием, так как о нем нельзя сказать, истинно оно или ложно. Оно называется предикатом или условием (на х и у). Приведем другие примеры предложений с переменными:

Есть простое число;

Есть четное число;

Меньше у,

Есть общий делитель у, z.

Будем считать, что допустимыми значениями переменных у и z являются натуральные числа. Если в предложениях заменить переменные их допустимыми значениями, то получатся высказывания, которые могут быть как истинными, так и ложными. Например,

2 есть простое число;

3 есть четное число;

5 меньше 7;

3 есть общий делитель 6 и 12.

ОПРЕДЕЛЕНИЕ. Предложения с переменными, дающие высказывания в результате замены свободных переменных их допустимыми значениями, называются предикатами.

Предложения могут служить примерами предикатов.

По числу входящих свободных переменных различают предикаты одноместные, двухместные, трехместные и т. д. Предикаты (2) и (3) - одноместные, предикаты (1) и (4) - двухместные, предикат (5) - трехместный. Высказывания будем считать нульместными предикатами.

Заменяя в одноместном предикате (2) переменную натуральными числами, будем получать высказывания:

0 есть простое число;

1 есть простое число;

2 есть простое число;

3 есть простое число и т. д.

Некоторые из них являются истинными. Таким образом, данный одноместный предикат выделяет среди натуральных чисел те, при подстановке которых вместо переменной получается истинное высказывание, и его можно рассматривать как условие на значения свободной переменной, входящей в предикат. В данном случае числа, удовлетворяющие этому условию, - простые.

Одноместный предикат можно рассматривать как условие на объекты данного вида; двухместный - как условие на пары объектов данного вида и т. д.

Предикаты можно задавать различными способами. В алгебре часто рассматривают предикаты, заданные с помощью уравнений, неравенств, а также систем уравнений или неравенств. Например, неравенство задает одноместный предикат, уравнение - двухместный, а система уравнений - трехместный у, z - рациональные переменные).

Обозначать предикаты будем большими буквами латинского алфавита (возможно, с нижними индексами) с указанием в скобках всех свободных переменных, входящих в этот предикат. Например, - обозначение двухместного предиката, - трехместного и - обозначение -местного предиката.

В дальнейшем мы будем говорить об истинностном значении произвольного предиката на том или ином наборе входящих в него свободных переменных, понимая под этим истинностное значение высказывания, которое получается в результате замены свободных переменных соответствующими им значениями из рассматриваемого набора.

Высказывание, которое получается при подстановке в предикат набора допустимых значений вместо его переменных, будем обозначать Если это высказывание истинное (ложное), говорят, что набор значений удовлетворяет (не удовлетворяет) предикату

При задании частичного порядка, если пара элементов (a ,b ) принадлежит U , то говорят, что a предшествует b . Если никакой из этих двух элементов другому не предшествует, но говорят, что они не сравнимы.

Условие антисимметричности здесь необходимо для того, чтобы исключить возможность эквивалентных элементов. Условие транзитивности нужно для построения цепочек.

Во многих задачах выбора наилучшего решения нет возможности выбрать решение, которое превосходило бы остальные по всем показателям. В этом случае, мы изучаем частичный порядок, заданный на множестве приемлемых вариантов A , и ограничиваем свой выбор теми вариантами, для которых не существует доминирующего их варианта.

Итальянский экономист Вильфредо Парето (1848-1923) предложил использовать в таких задачах конструкцию, которая в его честь называется границей Парето (Pareto frontier). Мы ее сейчас опишем.

Подмножество PF множества A называется его границей Парето для частичного порядка U , если любые два элемента PF не сравнимы, а любому другому элементу из A предшествует какой-либо элемент из PF .

На рисунке множество A состоит из жирно нарисованных точек на плоскости. Одна точка предшествует другой, если обе ее координаты не меньше соответствующих координат другой, а хотя бы одна из координат строго больше. В этом случае граница Парето состоит из точек, выкрашенных в красный цвет.

Понятие предиката.

Предикат- представляет собой функцию субъекта и выражения свойств о субъекте.

Средства, предоставляемые логикой высказываний, оказываются недостаточными для анализа многих математических рассуждений. В алгебре логики не рассматриваются ни структура высказываний, ни, тем более, их содержание. В то же время и в науке, и в практике используются заключения, существенным образом зависящие как от структуры, так и от содержания используемых в них высказываний.

Например, в рассуждении «Всякий ромб – параллелограмм; ABCD – ромб; следовательно, ABCD – параллелограмм» посылки и заключение являются элементарными высказываниями логики высказываний и с точки зрения этой логики рассматриваются как целые, неделимые, без учёта их внутренней структуры. Следовательно, алгебра логики, будучи важной частью логики, оказывается недостаточной в анализе многих рассуждений.

Поэтому возникает необходимость в расширении логики высказываний и построении такой логической системы, средствами которой можно исследовать структуру и содержание тех высказываний, которые в логике высказываний рассматриваются как элементарные.

Логика предикатов , как и традиционная формальная логика, расчленяет элементарное высказывание на субъект (буквально – подлежащее, хотя оно может играть и роль дополнения) и предикат (буквально – сказуемое, хотя оно может играть и роль определения).

Субъект – это то, о чем что-то утверждается в высказывании, а предикат – это то, что утверждается о субъекте. Логика предикатов – это расширение логики высказываний за счет использования предикатов в роли логических функций.

Например, в высказывании «7 – простое число», «7» – субъект, «простое число» – предикат. Это высказывание утверждает, что «7» обладает свойством «быть простым числом».

Если в рассмотренном примере заменить конкретное число 7 переменной х из множества натуральных чисел, то получим высказывательную форму «х – простое число». При одних значениях х (например, х = 13, х = 17) эта форма дает истинные высказывания, а при других значениях х (например, х = 10, х = 18) эта форма дает ложные высказывания.

Определение 1. Одноместным предикатом Р (х ) называется всякая функция одного переменного, в которой аргумент x пробегает значения из некоторого множества M , а функция при этом принимает одно из двух значений: истина или ложь.

Множество M , на котором задан предикат, называется областью определения предиката.

Множество , на котором предикат принимает только истинные значения, называется областью истинности предиката Р (х ).

Так, предикат P (x ) – «х – простое число» определён на множестве N , а множество для него есть множество всех простых чисел.

Определение 2. Предикат Р (х ), определённый на множестве M , называется тождественно истинным (тождественно ложным ), если .

Определение 3. Двухместным предикатом P ( x ) называется функция двух переменных х и у , определённая на множестве М =М 1 ×М 2 и принимающая значения из множества {1,0}.

В качестве примеров двухместных предикатов можно назвать предикаты: Q (x ) – «х = у » предикат равенства, определённый на множестве R 2 =R ×R ; F (x ) – «х || у » прямая х параллельна прямой у , определённой на множестве прямых, лежащих на данной плоскости.

Аналогично определяется n -местный предикат.

Говорят, что предикат Р (х ) является следствием предиката Q (х ) , если ; и предикаты Р (х ) и Q (х )равносильны , если .

Приведём примеры к изложенному материалу.

Пример 1. Среди следующих предложений выделить предикаты и для каждого из них указать область истинности, еслиM = R для одноместных предикатов и M = R×R для двухместных предикатов:

1) х + 5 = 1;


2) при х = 2 выполняется равенство х 2 – 1 = 0;
3) х 2 – 2х + 1 = 0;
4) существует такое число х , что х 3 – 2х + 1 = 0;
5) х + 2 х – 4;
6) однозначное неотрицательное число х кратно 3;
7) (х + 2) – (3х – 4);
8) х 2 + у 2 > 0.

Решение . 1) Предложение является одноместным предикатом Р (х ), I P = {– 4};
2) предложение не является предикатом. Это ложное высказывание;
3) предложение является одноместным предикатом Р (х ), I P = {1};
4) предложение не является предикатом. Это истинное высказывание;
5) предложение является одноместным предикатом Р (х ), I P = (3; +∞);
6) предложение является одноместным предикатом Р (х ), I P = {0; 3; 6; 9};
7) предложение не является предикатом;
8) предложение является двухместным предикатом Q (х,y ), I Q = R×R \ {(0,0)}.

Пример 2. Изобразить на декартовой плоскости область истинности предиката .

Решение . Неравенство, составляющее исходный предикат, ограничивает часть плоскости, заключенную между ветвями параболы х = у 2 , она изображена серой частью рисунка:


24.Логические операции над предикатами: конъюнкция, дизъюнкция, отрицание, импликация. Кванторные операции. Кванторы всеобщности и существования.

Логические операции над предикатами

Предикаты, так же, как высказывания, принимают два значения и и л (1, 0), поэтому к ним применимы все операции логики высказываний.

Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов.

Пусть на некотором множестве М определены два предиката Р (х ) и Q (х ).

Определение 4. Конъюнкцией двух предикатов Р (х ) и Q (х ) называется новый предикат Р (х )&Q (х ), который принимает значение «истина» при тех и только тех значениях , при которых каждый из предикатов Р (х ) и Q (х ) принимает значение «истина» и принимает значение «ложь» во всех остальных случаях. Очевидно, что областью истинности предиката Р (х )&Q (х ) является общая часть областей истинности предикатов Р (х ) и Q (х ), т.е. пересечение .

Так, например, для предикатов Р (х ): «х – четное число» и Q (х ): « х кратно 3» конъюнкцией Р (х )&Q (х ) является предикат «х – четное число и х кратно 3», то есть предикат «х делится на 6».

Определение 5. Дизъюнкцией двух предикатов Р (х ) и Q (х ) называется новый предикат , который принимает значение «ложь» при тех и только тех значениях , при которых каждый из предикатов принимает значение «ложь» и принимает значение «истина» во всех остальных случаях. Ясно, что областью истинности предиката является объединение областей истинности предикатов Р (х ) и Q (х ), то есть объединение .

Определение 6. Отрицанием предиката Р (х ) называется новый предикат , который принимает значение «истина» при всех значениях , при которых предикат Р (х ) принимает значение «ложь», и принимает значение «ложь» при тех значениях , при которых предикат Р (х ) принимает значение «истина». Очевидно, что, .

Определение 7. Импликацией предикатов Р (х ) и Q (х ) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно Р (х ) принимает значение «истина», а Q (х ) – значение «ложь» и принимает значение «истина» во всех остальных случаях.

Так как при каждом фиксированном справедлива равносильность , то .

Ясно, что при выполнении логических операций над предикатами к ним применимы и равносильности алгебры логики.

Пример 3. Пусть даны предикаты А (х,у ) и В (х,у ), определенные на множестве . Найти множество истинности предиката и изобразить ее с помощью кругов Эйлера-Венна.

Решение . Так как , то .

Изображена серой частью рисунка:

Можно рассматривать и обратную задачу: «Зная область истинности предиката, полученного в результате применения логических операций к некоторым предикатам, записать этот предикат».

Пример 4. Записать предикат, полученный в результате логических операций над предикатами Р (х ), Q (х ) и R (х ), область истинности которого изображена серой частью рисунка:

Решение . Так как здесь , то искомый предикат имеет вид: .
Кванторные операции над предикатами

Пусть имеется предикат Р (х ), определенный на множестве М . Если , то при подстановке а вместо х в предикат Р (х ) получится высказывание Р (а ). Такое высказывание называется единичным . Наряду с образованием из предикатов единичных высказываний в логике предикатов рассматривается еще две операции, которые превращают одноместный предикат в высказывание.

Определение 8. Пусть Р (х М . Под выражением понимают высказывание, истинное, когда Р (х ) тождественно истинный на множестве М предикат, и ложное в противном случае. Это высказывание уже не зависит от х . Соответствующее ему словесное выражение будет: «Для всякого х Р (х ) истинно». Символ называют квантором всеобщности .

Переменную х в предикате Р (х ) называют свободной (ей можно придавать различные значения из М ), в высказывании переменную х называют связанной квантором .

Определение 9. Пусть Р (х ) – предикат, определенный на множестве М . Под выражением понимают высказывание, которое является истинным, если существует хотя бы один элемент , для которого Р (х ) истинно, и ложным в противном случае. Это высказывание уже не зависит от х . Соответствующее ему словесное выражение будет: «Существует х , при котором Р (х ) истинно». Символ называют квантором существования. В высказывании переменная х связана квантором .

Приведем пример употребления кванторов.

Пример 5. Пусть на множестве N натуральных чисел задан предикат Р (х ): «Число х кратно 5». Используя кванторы, из данного предиката можно получить высказывания: – «Все натуральные числа кратны 5»; – «Существует натуральное число, кратное 5». Очевидно, первое из этих высказываний ложно, а второе истинно.

Ясно, что высказывание истинно только в том единственном случае, когда Р (х ) – тождественно истинный предикат, а высказывание ложно только в том единственном случае, когда Р (х ) – тождественно ложный предикат.

Кванторные операции применяются и к многоместным предикатам. Так, применение к двухместному предикату Q (х,у ) квантора всеобщности по переменной х дает одноместный предикат , зависящий от у . К этому предикату можно применить кванторную операцию по переменной у . В результате получим или высказывание или высказывание .

Таким образом, может быть получено одно из восьми высказываний: , , , , , , , .

Легко показать, что перестановка любых кванторов местами, вообще говоря, изменяет логическое значение высказывания.

Пример 6 . Пусть предикат Q (х,у ): «ху» определен множестве N × N. Показать, что высказывания и имеют различные логические значения.

Решение . Так как высказывание означает, что для всякого натурального числа у существует натуральное число х такое, что у является делителем х , то это высказывание истинно. Высказывание означает, что есть натуральное число х , которое делится на любое натуральное число у. Это высказывание, очевидно, ложно.

Если предикат Р (x ) является тождественно истинным, то истинными будут высказывания Р (а 1), Р (а 2),..., Р (а n ). При этом истинными будут высказывание и конъюнкция Р (а 1)&Р (а 2)&...&Р (а n ).

Если же хотя бы для одного элемента Р (а k ) окажется ложным, то ложными будут высказывание и конъюнкция Р (а 1)&Р (а 2)&...&Р (а n ). Следовательно, справедлива равносильность

Нетрудно показать, что справедлива и равносильность

Это означает, что кванторные операции обобщают операции конъюнкции и дизъюнкции на случай бесконечных областей.

25. Понятие формулы логики предикатов. Значение формулы логики предикатов. Равносильные формулы логики предикатов. Основные равносильности логики предикатов.

Понятие формулы логики предикатов.

В логике предикатов используется следующая символика:

1. Символы р , q , r , ... – переменные высказывания, принимающие два значения: 1 – истина, 0 – ложь.

2. Предметные переменные – х , у , z , ..., которые пробегают значения из некоторого множества М : х 0 , у 0 , z 0 , ... – предметные константы, то есть значения предметных переменных.

3. Р (·), F (·) – одноместные предикатные переменные; Q (·,·,...,·), R (·,·,...,·) – n -местные предикатные переменные. Р 0 (·), Q 0 (·,·,…,·) – символы постоянных предикатов.

4. Символы логических операций: .

5. Символы кванторных операций: .

6. Вспомогательные символы: скобки, запятые.

Определение формулы логики предикатов.

1. Каждое высказывание как переменное, так и постоянное, является формулой.

2. Если F (·,·,...,·) – n -местная предикатная переменная или постоянный предикат, а x 1 , х 2 , ..., х n – предметные переменные или предметные постоянные, не обязательно все различные, то F (x 1 , х 2 ,..., х n ) есть формула. В этой формуле предметные переменные являются свободными. Формулы вида 1 и 2 называются элементарными.

3. Если A и B – формулы, причем такие, что одна и та же предметная переменная не является в одной из них связанной, а в другой свободной, то слова есть формулы. В этих формулах те переменные, которые в исходных формулах были свободными, являются свободными, а те, которые были связанными, являются связанными.

4. Если А – формула, то – формула, и характер предметных переменных при переходе от формулы А к формуле не меняется.

5. Если А (х ) – формула, в которую предметная переменная х входит свободно, то слова и являются формулами, причем предметная переменная в них входит связанно.

6. Никакая другая строка символов формулой не является.

Например, если Р (x ) и Q (х,у ) – одноместный и двухместный предикаты, а q , r – переменные высказывания, то формулами будут слова:

Не является формулой слово: . Здесь нарушено условие п.3, так как в формулу переменная х входит связано, а в формулу Р (х ) переменная х входит свободно.

Из определения формулы логики предикатов ясно, что всякая формула алгебры высказываний является формулой логики предикатов.

Пример 1. Какие из следующих выражений являются формулами логики предикатов? В каждой формуле выделите свободные и связанные переменные.

2) ;

3) ;

Решение. Выражения 1), 2), 4), 6) являются формулами, так как записаны в соответствии с определением формулы логики предикатов. Выражения 3) и 5) не являются формулами. В выражении 3) операция конъюнкции применена к формулам P (x ) и ; в первой из них переменная х свободна, а во второй связана квантором общности, что противоречит определению формулы. В выражении 5) квантор существования по переменной у навешен на формулу , в которой переменная у связана квантором общности, что также противоречит определению формулы.

В формуле 1) переменная у свободна, а переменные х и z связаны. В формуле 2) нет предметных переменных. В формуле 4) переменная х связана, а переменная у свободна.

Значение формулы логики предикатов

О логическом значении формулы логики предикатов можно говорить лишь тогда, когда задано множество М , на котором определены входящие в эту формулу предикаты. Логическое значение формулы логики предикатов зависит от значения трех видов переменных, входящих в формулу:

а) переменных высказываний;
б) свободных предметных переменных из множества М ;
в) предикатных переменных.

При конкретных значениях каждого из трех видов переменных формула логики предикатов становится высказыванием, имеющим истинное или ложное значение.

Пример 2. Дана формула , где предикаты Р (x ), Q (x ) и R (x ) определены на множестве N. Найти ее значение, если

1) Р (x ): «число х делится на 3», Q (x ): «число х делится на 4», R (x ): «число х делится на 2»;

2) Р (x ): «число х делится на 3», Q (x ): «число х делится на 4», R (x ): «число х делится на 5».

Решение. В обоих случаях конъюнкция Р (x )&Q (x ) есть утверждение, что число х делится на 12. Но тогда при всех х , если число х делится на 12, то оно делится и на 2, и, значит, в случае 1) формула истинна.

п-местный предикат - это функция Р(х 1 х 2 , х п) от п переменных, принимающих значения из некоторых заданных предметных областей, так что,a функция P принимает два логических значения – «истинно» или «ложно».

Таким образом, предикат Р(х 1, х 2, ..., х п) является функцией типа , где множества, называются предметными областями предиката; х 1, х 2, ..., х п -предметными переменными предиката; В = {1,0}.

Соответствия между предикатами, отношениями и функциями:

1. Для любых М и п существует взаимно однозначное соответствие между n -местными отношениями u n-местными предикатами Р(х 1, х 2, ..., х п), :

Каждому n -местному отношению R соответствует предикат Р(х 1, х 2, ..., х п), такой, что Р(a 1, a 2, ...,a п) = 1, если и только если (a 1, a 2, ..., a п) Î R;

Всякий предикат Р(х 1, х 2, ..., х п) определяет отношение R такое, что (a 1, a 2, ..., a п) Î R, если и только если Р(a 1, a 2, ...,a п) = 1.

При этом R задает область истинности предиката Р.

2. Всякой функции f (х 1, х 2, ..., х п) , соответствует предикат Р(х 1, х 2, ..., х п, х п+1)=1такой, что Р(a 1, a 2, ..., a п, a п+1)=1, если и только если f (a 1, a 2, ..., a п)=a n +1 .

Обратное соответствие (от (n+1 )-местного предиката (рис. 2.17) к n -местной функции) возможно не всегда, а только для таких предикатов Р ’ для которых выполняется условие (связанное с требованием однозначности функции): Р(a 1, a 2, ...,a п, a п+1) = 1, то для любого

a ’ п +1 ≠a п +1 Р(a 1, a 2, ...,a п, a ’ п +1) = 0 {1}

Аналогичное соответствие (взаимно однозначное) имеется между подмножеством отношений {R"}{R} и множеством функций {f }.

Для этого класса отношений выполняется аналогичное условие: если (a 1, a 2, ..., a п, a п+1) Î R ’ то для любого a ’ п+1 ≠a п+1 , (a 1, a 2, ..., a п, a п+1)R ’

Выражение Р(a 1, a 2, ...,a п) будем понимать как высказывание «Р(a 1, a 2, ...,a п)=1», а выражение Р(х 1, х 2, ..., х п) - как переменное высказывание, истинность которого определяется подстановкой элементов множества М вместо переменных (х 1, х 2, ..., х п).

Для обозначения двухместных предикатов помимо префиксной записи Р(х 1, х 2) используется нередко инфиксная запись х 1 Рх 2

Каким отношениям и функциям соответствуют следующие предикаты, определенные на множестве натуральных чисел:

1. Предикат тождества E:N 2 →В: Е(а ], а 2) = 1 тогда и только тогда, когда а ]= а 2

Двухместному предикату тождества Е – «x ]= x 2 » взаимно однозначно соответствуют:

а) двухместное отношение R 1 , - «быть равным», , тогда и только тогда, когда Е (a 1 , а 2) = 1;

б) одноместная функция (операция) тождества f 1 (x 1 )=х 2 , а именно:.

2. Предикат делимости D: N 2 →В: D (а ], а 2) = 1 тогда и только тогда, когда а ] делится на а 2:


Двухместному предикату делимости D – «х 1 делится на х 2 » взаимно однозначно соответствует двухместное отношение R 2 – «делиться», тогда и только тогда, когда D (a 1 , а 2) = 1. Однако функции f 1 (x 1 )=х2 для предиката делимости D (x 1 , x 2) не существует, так как не выполнено условие (1), например D(6, 2) = 1 и D(6, 3) = 1, однако 2≠3.

3. Предикат суммы S:N 3 →В: S(а 1, а 2, а 3) = 1 тогда и только тогда, когда а 1 +a 2 = a 3 .

Трехместному предикату суммы S – «x 1 +x 2 =x 3 » взаимно однозначно соответствуют:

а) трехместное отношение: тогда и только тогда, когда S(а 1, а 2, а 3) = 1;

б) двухместная функция (операция арифметики) - сложение f(х 1 , х 2) = х 3 , а именно: х 1 + х 2 = х 3 .