Меню
Бесплатно
Главная  /  Отношения  /  В связи с атомным радиусом. Атомные и ионные радиусы

В связи с атомным радиусом. Атомные и ионные радиусы

Размеры частиц часто определяют тип кристаллической структуры, важны для понимания протекания многих химических реакций. Размер атомов, ионов, молекул определяется валентными электронами. Основа понимания этого вопроса – закономерности изменения орбитальных радиусов – изложены в подразд. 2.4. Атом не имеет границ и его размер – величина условная. Тем не менее можно характеризовать размер свободного атома орбитальным радиусом. Но практический интерес представляют обычно атомы и ионы в составе вещества (в молекуле, полимере, жидкости или твердом веществе), а не свободные. Поскольку состояния свободного и связанного атома существенно отличаются (и прежде всего их энергия), то должны отличаться и размеры.

Для связанных атомов тоже можно ввести характеризующие их размер величины. Хотя электронные облака связанных атомов могут существенно отличаться от сферических, размеры атомов принято характеризовать эффективными (кажущимися)радиусами .

Размеры атомов одного и того же элемента существенно зависят от того, в составе какого химического соединения, с каким типом связи находится атом. Например, для водорода половина межатомного расстояния в молекуле Н 2 равна 0,74/2 = 0,37 Å, а в металлическом водороде получается значение радиуса 0,46 Å. Поэтому выделяют ковалентные, ионные, металлические и вандерваальсовые радиусы . Как правило, в концепциях эффективных радиусов межатомные расстояния (точнее, межъядерные) считают суммой радиусов двух соседних атомов, принимая атомы за несжимаемые шары. При наличии надёжных и точных экспериментальных данных о межатомных расстояниях (а такие данные уже в течение длительного времени доступны и для молекул, и для кристаллов с точностью до тысячных долей ангстрема) для определения радиуса каждого атома остаётся одна проблема – как распределить межатомное расстояние между двумя атомами. Понятно, что эта проблема может быть решена однозначно только при введении дополнительных независимых данных или предположений.

Конец работы -

Эта тема принадлежит разделу:

Свойства химической связи

На сайте сайт читайте: "свойства химической связи"..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ковалентные радиусы
Наиболее очевидна ситуация с ковалентными радиусами для атомов, которые образуют неполярные двухатомные молекулы. В таких случаях ковалентный радиус составляет ровно половину межатомного расстояния

Ионные радиусы
Поскольку при н. у. затруднительно наблюдать молекулы с ионными связями и в то же время известно большое количество соединений, образующих ионные кристаллы, то, когда речь идёт об ионных радиусах,

Металлические радиусы
Само по себе определение металлических радиусов не представляет проблем – достаточно измерить межъядерное расстояние в соответствующем металле и поделить пополам. В табл. 20 приведены некоторые мет

Вандерваальсовые радиусы
Вандерваальсовые радиусы можно определить, если измерить в кристалле расстояния между атомами, когда не существует никакой химической связи между ними. Иначе говоря, атомы принадлежат разным молеку

Вопросы для самопроверки
1. Что такое орбитальные и эффективные радиусы? 2. В чем отличие между радиусом дробинки и атома или иона? 3. В каких случаях ковалентный радиус равен половине длины

Эффективные заряды атомов
При образовании химической связи происходит перераспределение электронной плотности, и в случае полярной связи атомы оказываются электрически заряженными. Эти заряды называют эффективными. Они хара

Эффективные заряды в некоторых ионных кристаллах
Вещество CsF CsCl NaF NaCl LiF LiCl LiI DЭО 3,3

Эффективные заряды атомов в оксидах (по Н. С. Ахметову)
Оксид Na2O MgO Al2O3 SiO2 P2O5 SO

Вопросы для самопроверки
1. Что такое эффективный заряд атома? 2. Может ли эффективный заряд превышать (по модулю) степень окисления атома? 3. Что такое степень ионности связи? 4. К

Валентность
В общем валентность характеризует способность атомов элемента образовывать соединения, содержащие определённый состав (определённые соотношения количества разных элементов в соединении). Часто в ли

Вопросы для самопроверки
1. Дайте определения понятиям: степень окисления; ковалентность; координационное число; стерическое число. 2. Определите ковалентность, степень окисления и КЧ для: H2S; H

Энергия связи
Величина энергии – важнейшая характеристика связи, определяющая устойчивость веществ к нагреву, освещению, механическим воздействиям, реакциям с другими веществами[†]. Существуют различные методы э

Энергии связи двухатомных молекул в газе (Н. Н. Павлов)
Молекула H2 Li2 Na2 K2 F2 Cl2

Вопросы для самопроверки
1. Предскажите изменение энергии связи С–N в ряду Н3СNН2, Н2СNН, НСNН. 2. Предскажите изменение энергии связи в ряду О2, S2, Se2

Химическая связь и Периодическая система элементов
Рассмотрим закономерности строения и свойств некоторых простых веществ и простейших соединений, определяемые электронным строением их атомов. Атомы благородных газов (группа VIIIA) имеют полностью

Изменение межатомных расстояний для простых веществ группы VIA
Вещество Расстояние между атомами, Å внутри молекул между молекулами разность S

Дополнительный
3. Общая химия / под ред. Е. М. Соколовской. М.: Изд-во МГУ, 1989. 4. Угай Я. О. Общая химия. М.: Высш. шк., 1984. 5. Он же. Общая и неорганическая химия. М..

Периодические свойства элементов

Периодичность выражена в структуре электронной оболочки атомов, поэтому с периодическим законом хорошо согласуются свойства, зависящие от состояния электронов: атомные и ионные радиусы, энергия ионизации, сродство к электрону, электроотрицательность и валентность элементов. Но от электронной структуры атомов зависят состав и свойства простых веществ и соединений, поэтому периодичность наблюдается во многих свойствах простых веществ и соединений: температура и теплота плавления и кипения, длина и энергия химической связи, электродные потенциалы, стандартные энтальпии образования и энтропии веществ и т.д. Периодический закон охватывает более 20 свойств атомов, элементов, простых веществ и соединений.

Согласно квантовой механике, электрон может находиться в любой точке вокруг ядра атома как вблизи него, так и на значительном удалении. Поэтому границы атомов расплывчаты, неопределенны. В то же время в квантовой механике вычисляется вероятность распределения электронов вокруг ядра и положение максимума электронной плотности для каждой орбитали.

Орбитальный радиус атома (иона) – это расстояние от ядра до максимума электронной плотности наиболее удаленной внешней орбитали этого атома (иона) .

Орбитальные радиусы (их значения приведены в справочнике) в периодах уменьшаются, т.к. увеличение числа электронов в атомах (ионах) не сопровождается появлением новых электронных слоев. Электронная оболочка атома или иона каждого последующего элемента в периоде по сравнению с предшествующим уплотняется из-за увеличения заряда ядра и увеличения притяжения электронов к ядру.

Орбитальные радиусы в группах увеличиваются, т.к. атом (ион) каждого элемента отличается от вышестоящего появлением нового электронного слоя.

Изменение орбитальных атомных радиусов для пяти периодов показано на рис. 13, из которого видно, что зависимость имеет характерный для периодического закона «пилообразный» вид.

Рис. 13. Зависимость орбитального радиуса

от атомного номера элементов первого – пятого периодов.

Но в периодах уменьшение размеров атомов и ионов происходит не монотонно: у отдельных элементов наблюдаются небольшие «всплески» и «провалы». В «провалах» находятся, как правило, элементы, у которых электронная конфигурация соответствует состоянию повышенной стабильности: например, в третьем периоде это магний (3s 2), в четвертом – марганец (4s 2 3d 5) и цинк (4s 2 3d 10) и т.д.

Примечание. Расчеты орбитальных радиусов проводятся с середины семидесятых годов прошлого столетия благодаря развитию электронно-вычислительной техники. Ранее пользовались эффективными радиусами атомов и ионов, которые определяются из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагается, что атомы представляют собой несжимаемые шары, которые соприкасаются своими поверхностями в соединениях. Эффективные радиусы, определяемые в ковалентных молекулах, называются ковалентными радиусами, в металлических кристаллах – металлическими радиусами, в соединениях с ионной связью – ионными радиусами. Эффективные радиусы отличаются от орбитальных, но их изменение в зависимости от атомного номера также является периодическим.

Чтобы разобраться в вопросе, что в современной науке называется радиусом атома, вспомним, что из себя представляет сам атом. По классическим представлениям в центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра каждый на своей орбите вращаются электроны.

Радиус атома в физике

Поскольку в данной модели строения атома электроны являются пространственно ограниченными частицами, т. е. корпускулами, логично считать атомным радиусом (а. р.) расстояние от его ядра до самой дальней, или внешней, орбиты, по которой вращаются так называемые валентные электроны.

Однако по современным, квантовомеханическим представлениям , определить данный параметр нельзя так однозначно, как это делается в классической модели. Здесь электроны уже не представляются в виде частиц-корпускул, а получают свойства волн, т. е. пространственно-неограниченных объектов. В такой модели точно определить положение электрона просто невозможно. Здесь эта частица уже представляется в виде электронной орбитали, плотность которой меняется, в зависимости от расстояния до ядра атома.

Итак, в современной модели строения атома его радиус нельзя определить однозначно. Поэтому в квантовой физике, общей химии, физике твердого тела и других смежных науках эту величину сегодня определяют как радиус сферы, в центре которой находится ядро, внутри которой сосредоточено 90-98% плотности электронного облака. Фактически это расстояние и определяет границы атома.

Если рассмотреть Периодическую таблицу химических элементов (таблицу Менделеева), в которой приведены атомные радиусы, можно увидеть определенные закономерности, которые выражаются в том, что в пределах периода эти числа уменьшаются слева направо, а в пределах группы они увеличиваются сверху вниз. Такие закономерности объясняются тем, что внутри периода при движении слева направо заряд атома возрастает, что увеличивает силу притяжения им электронов, а при движении внутри группы сверху вниз все больше заполняется электронных оболочек.

Атомный радиус в химии и кристаллографии

Какие бывают виды

Данная характеристика сильно варьируется, в зависимости от того, в какой химической связи состоит атом. Поскольку все вещества в природе в подавляющем своем большинстве состоят из молекул, понятие а. р. используют для определения межатомных расстояний в молекуле. А данная характеристика зависит от свойств входящих в молекулу атомов, т. е. их положения в Периодической системе химических элементов. Обладая разными физическими и химическими свойствами, молекулы образуют все огромное разнообразие веществ.

По сути, эта величина очерчивает сферу действия силы электрического притяжения ядра атома и его внешних электронных оболочек. За пределами этой сферы в действие вступает сила электрического притяжения соседнего атома. Существует несколько типов химической связи атомов в молекуле:

  • ковалентная;
  • ионная;
  • металлическая;
  • ван-дер-ваальсова.

Соответственно этим связям таким же будет и атомный радиус .

Как зависит от типа химической связи

При ковалентной связи АР определяется как половина расстояния между соседними атомами в одинарной химической связи Х-Х, причем Х - это неметалл, ибо данная связь свойственна неметаллам. Например, для галогенов ковалентный радиус будет равен половине межъядерного расстояния Х-Х в молекуле Х2, для молекул селена Se и серы S - половине расстояния Х-Х в молекуле Х8, для углерода С он будет равен половине кратчайшего расстояния С-С в кристалле алмаза.

Данная химическая связь обладает свойством аддитивности , т. е. суммирования, что позволяет определять межъядерные расстояния в многоатомных молекулах. Если связь в молекуле двойная или тройная, то ковалентный АР уменьшается, т. к. длины кратных связей меньше одинарных.

При ионной связи, образующейся в ионных кристаллах, используют значения ионного АР для определения расстояния между ближайшими анионом и катионом, находящимися в узлах кристаллической решетки. Такое расстояние определяется как сумма радиусов этих ионов.

Существует несколько способов определения ионных радиусов , при которых отличаются значения у индивидуальных ионов. Но в результате эти способы дают примерно одинаковые значения межъядерных расстояний. Эти способы или системы были названы в честь ученых, проводивших в этой области соответствующие исследования:

  • Гольдшмидта;
  • Полинга;
  • Белова и Бокия;
  • других ученых.

При металлической связи, возникающей в кристаллах металлов, АР принимаются равными половине кратчайшего расстояния между ними. Металлический радиус зависит от координационного числа К. При К=12 его значение условно принимается за единицу. Для координационных чисел 4, 6 и 8 металлические радиусы одного и того же элемента соответственно будут равны 0.88, 0.96 и 0.98.

Если взять два разных металла и сравнить металлические радиусы их элементов, то близость этих значений друг к другу будет означать необходимое, но недостаточное условие взаимной растворимости этих металлов по типу замещения. Например, жидкие калий К и литий Li в обычных условиях не смешиваются и образуют два жидких слоя, потому что их металлические радиусы сильно различаются (0.236 нм и 0.155 нм соответственно), а калий К с цезием Cs образуют твердый раствор благодаря близости их радиусов (0.236 нм и 0.268 нм).

Ван-дер-ваальсовы АР используют для определения эффективных размеров атомов благородных газов, а также расстояний между ближайшими одноименными атомами, принадлежащими разным молекулам и не связанными химической связью (пример - молекулярные кристаллы). Если такие атомы сблизятся на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, между ними возникнет сильное межатомное отталкивание. Эти радиусы определяют минимально допустимые границы контакта двух атомов, принадлежащих соседним молекулам.

Кроме того, данные АР используют для определения формы молекул, их конформаций и упаковки в молекулярных кристаллах. Известен принцип "плотной упаковки", когда молекулы, образующие кристалл , входят друг в друга своими "выступами" и "впадинами". На основе этого принципа интерпретируются данные кристаллографии и предсказываются структуры молекулярных кристаллов.

Видео

Это полезное видео поможет вам понять, что такое радиус атома.

Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, его представляют как ядро, вокруг которого по орбиталям вращаются электроны. Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений.

Размеры ионных радиусов подчиняются следующим закономерностям:

1. Внутри одного вертикального ряда периодической системы радиусы ионов с одинаковым зарядом увеличиваются с возрастанием атомного номера, поскольку растет число электронных оболочек, а значит, и размер атома.

2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Радиус аниона больше радиуса катиона, поскольку у аниона имеется избыток электронов, а у катиона – недостаток. Например, у Fe, Fe 2+ , Fe 3+ эффективный радиус равен 0, 126, 0, 080 и 0, 067 нм соответственно, у Si 4- , Si, Si 4+ эффективный радиус равен 0, 198, 0, 118 и 0, 040 нм.

3. Размеры атомов и ионов следуют периодичности системы Менделеева; исключения составляют элементы от № 57 (лантан) до №71 (лютеций), где радиусы атомов не увеличиваются, а равномерно уменьшаются (так называемое лантаноидное сжатие), и элементы от № 89 (актиний) и дальше (так называемое актиноидное сжатие).

Атомный радиус химического элемента зависит от координационного числа . Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний. При этом относительная разность значений атомных радиусов, соответствующих двум разным координационным числам, не зависит от типа химической связи (при условии, что тип связи в структурах со сравниваемыми координационными числами одинаков). Изменение атомных радиусов с изменением координационного числа существенно сказывается на величине объемных изменений при полиморфных превращениях. Например, при охлаждении железа, его превращение из модификации с гранецентрированной кубической решеткой в модификацию с объемно-центрированной кубической решеткой имеющее место при 906 о С, должно сопровождаться увеличением объема на 9%, в действительности увеличение объема составляет 0, 8%. Это связано с тем, что за счет изменения координационного числа от 12 до 8 атомный радиус железа уменьшается на 3%. Т.е., изменение атомных радиусов при полиморфных превращениях в значительной степени компенсируют те объемные изменения, которые должны были бы произойти, если бы при этом не менялся атомный радиус. Атомные радиусы элементов можно сопоставлять только при одинаковом координационном числе.

Атомные (ионные) радиусы зависят также от типа химической связи.

В кристаллах с металлической связью атомный радиус определяется как половина межатомного расстояния между ближайшими атомами. В случае твердых растворов металлические атомные радиусы меняются сложным образом.

Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Так, расстояния в одинарных связях С-С в алмазе и насыщенных углеводородах одинаковы и равны 0, 154 нм.

Ионные радиусы в веществах с ионной связью не могут быть определены как полусумма расстояний между ближайшими ионами. Как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов отличается от сферической. Существует несколько подходов к оценке величины ионных радиусов. На основании этих подходов оценивают ионные радиусы элементов, а затем из экспериментально определенных межатомных расстояний определяют ионные радиусы других элементов.

Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми атомными радиусами считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой химической связью, т.е. принадлежащими разным молекулам (например, в молекулярных кристаллах).

При использовании в расчетах и построениях величин атомных (ионных) радиусов их значения следует брать из таблиц, построенных по одной системе.

Атомным ионам; имеют смысл радиусов сфер, представляющих эти атомы или ионы в молекулах или кристаллах. Атомные радиусы позволяют приближённо оценивать межъядерные (межатомные) расстояния в молекулах и кристаллах.

Электронная плотность изолированного атома быстро убывает по мере увеличения расстояния до ядра, так что радиус атома можно было бы определить как радиус той сферы, в которой сосредоточена основная часть (например, 99%) электронной плотности. Однако для оценки межъядерных расстояний оказалось удобнее интерпретировать атомные радиусы иначе. Это привело к появлению различных определений и систем атомных радиусов.

Ковалентный радиус атома Х определяют как половину длины простой химической связи Х—Х. Так, для галогенов ковалентные радиусы вычисляются из равновесного межъядерного расстояния в молекуле Х 2 , для серы и селена - в молекулах S 8 и Se 8 , для углерода - в кристалле алмаза. Исключение составляет атом водорода, для которого ковалентный атомный радиус принимается равным 30 пм, тогда как половина межъядерного расстояния в молекуле Н 2 равна 37 пм. Для соединений с ковалентным характером связи, как правило, выполняется принцип аддитивности (длина связи Х—Y примерно равна сумме атомных радиусов атомов Х и Y), что позволяет предсказывать длины связей в многоатомных молекулах.

Ионные радиусы определяют как величины, сумма которых для пары ионов (например, Х + и Y -) равна кратчайшему межъядерному расстоянию в соответствующих ионных кристаллах. Существует несколько систем ионных радиусов; системы различаются численными значениями для отдельных ионов в зависимости от того, какой радиус и какого иона принят за основу при вычислении радиусов других ионов. Например, по Полингу - это радиус иона О 2- , принятый равным 140 пм; по Шеннону - радиус того же иона, принятый равным 121 пм. Несмотря на эти различия, разные системы при вычислении межъядерных расстояний в ионных кристаллах приводят к примерно одинаковым результатам.

Металлические радиусы определяют как половину кратчайшего расстояния между атомами в кристаллической решётке металла. Для структур металла, различающихся типом упаковки, эти радиусы различны. Близость значений атомных радиусов различных металлов часто служит указанием на возможность образования этими металлами твёрдых растворов. Аддитивность радиусов позволяет предсказывать параметры кристаллических решёток интерметаллических соединений.

Ван-дер-ваальсовы радиусы определяют как величины, сумма которых равна расстоянию, на которое могут сблизиться два химически не связанных атома разных молекул или разных групп атомов одной и той же молекулы. В среднем ван-дер-ваальсовы радиусы примерно на 80 пм больше, чем ковалентные радиусы. Ван-дер-ваальсовы радиусы используют для интерпретации и предсказания стабильности конформаций молекул и структурного упорядочения молекул в кристаллах.

Лит.: Хаускрофт К., Констебл Э. Современный курс общей химии. М., 2002. Т. 1.