Меню
Бесплатно
Главная  /  Здоровье  /  A b частицы. Элементарные частицы

A b частицы. Элементарные частицы

Альфа(а)-лучи - положительно заряженные ионы гелия (Не++), вылетающие из атомных ядер со скоростью 14 000-20 000 км/час. Энергия частиц составляет 4-9 MeV. а-излучение наблюдается, как правило, у тяжелых и преимущественно естественных радиоактивных элементов (радий, торий и др.). Величина пробега а-частицы в воздухе возрастает с увеличением энергии а-излучения.

Так, например, а-частицы тория (Th232), имеющие энергию 3,9в MeV, в воздухе пробегают 2,6 см, а а-частицы радия С с энергией 7,68 MeV имеют пробег 6,97 см. Минимальная толщина поглотителя, необходимая для полного поглощения частиц, называется пробегом этих частиц в данном веществе. Пробеги а-частиц в воде и ткани составляют величины 0,02-0,06 мм.

а-частицы поглощаются полностью листком папиросной бумаги или тонким слоем алюминия. Одним из важнейших свойств а-излучения является сильное ионизирующее действие. На пути движения а-частица в газах образует огромное количество ионов. Например, в воздухе при 15° и 750 мм давления одна а-частица дает 150 000-250000 пар ионов в зависимости от ее энергии.

Так, например,удельная ионизация в воздухе а-частиц от радона , имеющих энергию 5,49 MeV, составляет 2500 пар ионов на 1 мм пути. Плотность ионизации в конце пробега а-частиц возрастает, поэтому поражаемость клеток в конце пробега примерно в 2 раза больше, чем в начале пробега.

Физические свойства а-частиц определяют особенности их биологического действия на организм и способы защиты от этого вида излучения. Внешнее облучение а-лучами не представляет опасности, так как достаточно удалиться от источника на несколько (10-20) сантиметров или установить простейший экран из бумаги, ткани, алюминия и других обычных материалов, чтобы излучение было полностью поглощено.

Наибольшую опасность а-лучи представляют при попадании и отложении внутри радиоактивных а-излучающих элементов. В этих случаях происходит непосредственное облучение а-лучами клеток и тканей организма.

Бета(b)-лучи - поток электронов, выбрасываемых из атомных ядер со скоростью приблизительно 100 000-300 000 км/сек. Максимальная энергия р-частиц находится в пределах от 0,01 до 10 MeV. Заряд b-частицы по знаку и величине равен заряду электрона. Радиоактивные превращения типа b-распада широко распространены среди естественных и искусственных радиоактивных элементов.

b-лучи обладают значительно большей проникающей способностью Но сравнению с а-лучами. В зависимости от энергии b-лучей их пробег в воздухе составляет от долей миллиметра до нескольких метров. Так, пробег b-частиц с энергией 2-3 MeV в воздухе составляет 10-15 м, а в воде и ткани измеряется миллиметрами. Например, пробег b-частиц, Испускаемых радиоактивным фосфором (Р32) с максимальной энергией 1,7 MeV, в ткани равен 8 мм.

b-частица с энергией , равной 1 MeV, может образовать на своем пути в воздухе около 30 000 пар ионов. Ионизирующая способность b-частиц в несколько раз меньше, чем таковая а-частиц той же энергии.

Воздействие b-лучей на организм может проявляться как при внешнем, так и при внутреннем облучении, в случае попадания в организм активных веществ, излучающих b-частицы. Для защиты от b-лучей при внешнем облучении необходимо применение экранов из материалов (стекло, алюминий, свинец и др.). Интенсивность излучения можно снизить увеличением расстояния от источника.

Бозон Хиггса пытаются найти десятки лет, но пока безуспешно. Между тем без него ключевые положения современной теории микромира зависают в воздухе.

Исследование частиц началось не так давно. В 1897 году Джозеф Джон Томсон открыл электрон, а через 20 лет Эрнест Резерфорд доказал, что ядра водорода входят в состав ядер прочих элементов, и позднее назвал их протонами. В1930-х были обнаружены нейтрон, мюон и позитрон и предсказано существование нейтрино. Тогда же Хидеки Юкава построил теорию ядерных сил, переносимых гипотетическими частицами в сотни раз тяжелее электрона, но много легче протона (мезонами). В 1947 году следы распадов пи-мезонов (пионов) нашли на фотопластинках, экспонированных в космических лучах. Позднее обнаружили и другие мезоны, причем некоторые из них тяжелее не только протона, но и ядра гелия. Физики также открыли множество барионов, тяжелых и поэтому нестабильных родственников протона и нейтрона. Когда-то все эти частицы называли элементарными, но такая терминология давно устарела. Сейчас элементарными принято считать только несоставные частицы - фермионы (с половинным спином - лептоны и кварки) и бозоны (с целочисленным спином - переносчики фундаментальных взаимодействий).

Элементарные частицы Стандартной модели

Фермионная группа (с полуцелым спином) состоит из лептонов и кварков так называемых трех поколений. Заряженные лептоны - это электрон и его массивные аналоги мюон и тау-частица (и их античастицы). У каждого лептона имеется нейтральный партнер в лице одной из трех разновидностей нейтрино (тоже с античастицами). Семейство бозонов, спин которых равен 1, - это частицы, переносящие взаимодействия между кварками и лептонами. Некоторые из них не имеют массы и электрического заряда - это глюоны, обеспечивающие межкварковые связи в мезонах и барионах, и фотоны, кванты электромагнитного поля. Слабые взаимодействия, проявляющиеся в процессах бета-распада, обеспечивает тройка массивных частиц - двух заряженных и одной нейтральной.

Индивидуальные названия элементарных и составных частиц обычно не связаны с именами конкретных ученых. Однако почти 40 лет назад была предсказана еще одна элементарная частица, которой присвоили имя живого человека, шотландского физика Питера Хиггса. Подобно переносчикам фундаментальных взаимодействий, она имеет целочисленный спин и принадлежит к классу бозонов. Однако спин ее равен не 1, а 0, и в этом отношении у нее нет аналогов. Вот уже десятки лет ее ищут на самых крупных ускорителях - закрытом в прошлом году американском «Тэватроне» и функционирующем сейчас Большом адронном коллайдере под пристальным вниманием мировых СМИ. Ведь бозон Хиггса очень нужен современной теории микромира - Стандартной модели элементарных частиц. Если его не удастся обнаружить, ключевые положения этой теории зависнут в воздухе.

Калибровочные симметрии

Начало пути к бозону Хиггса можно отсчитывать от короткой статьи, опубликованной в 1954 году перебравшимся в США китайским физиком Янг Чжэньнином и его коллегой по Брукхэйвенской национальной лаборатории Робертом Миллсом. В те годы экспериментаторы открывали все новые и новые частицы, изобилие которых никак не удавалось объяснить. В поисках перспективных идей Янг и Миллс решили опробовать возможности очень интересной симметрии, которой подчиняется квантовая электродинамика. К тому времени эта теория доказала свою способность давать великолепно согласующиеся с опытом результаты. Правда, в ходе некоторых вычислений там появляются бесконечности, однако от них можно избавляться с помощью математической процедуры, названной перенормировкой.

Симметрию, заинтересовавшую Янга и Миллса, в1918 году ввел в физику немецкий математик Герман Вейль. Он назвал ее калибровочной, и это название сохранилось до наших дней. В квантовой электродинамике калибровочная симметрия проявляется в том, что волновую функцию свободного электрона, которая представляет собой вектор с вещественной и мнимой частью, можно непрерывно поворачивать в каждой точке пространства-времени (из-за чего симметрия называется локальной). Эта операция (на формальном языке - изменение фазы волновой функции) приводит к тому, что в уравнении движения электрона появляются добавки, которые необходимо скомпенсировать, чтобы оно сохранило силу. Для этого туда вводится дополнительный член, который описывает электромагнитное поле, взаимодействующее с электроном. Квантом этого поля оказывается фотон, безмассовая частица с единичным спином. Таким образом из локальной калибровочной симметрии уравнения свободного электрона следует существование фотонов (а также и постоянство электронного заряда). Можно сказать, что эта симметрия предписывает электрону взаимодействовать с электромагнитным полем. Любой фазовый сдвиг становится актом такого взаимодействия - например, испусканием или поглощением фотона.

Связь калибровочной симметрии с электромагнетизмом была выявлена еще в 1920-е годы, однако особого интереса не вызывала. Янг и Миллс первыми попытались применить эту симметрию для конструирования уравнений, описывающих частицы иной природы, нежели электрон. Они занялись двумя «старейшими» барионами - протоном и нейтроном. Хоть эти частицы и не тождественны, но по отношению к ядерным силам они ведут себя практически одинаково и имеют почти одинаковую массу. В 1932 году Вернер Гейзенберг показал, что протон и нейтрон можно формально считать различными состояниями одной и той же частицы. Для их описания он ввел новое квантовое число - изотопический спин. Поскольку сильное взаимодействие не делает различий между протонами и нейтронами, оно сохраняет полный изотопический спин, подобно тому, как электромагнитное взаимодействие сохраняет электрический заряд.

Янг и Миллс задались вопросом, какие локальные калибровочные преобразования сохраняют изоспиновую симметрию. Было ясно, что они не могут совпадать с калибровочными преобразованиями квантовой электродинамики - хотя бы потому, что речь шла уже о двух частицах. Янг и Миллс проанализировали совокупность таких преобразований и выяснили, что они порождают поля, чьи кванты предположительно переносят взаимодействия между протонами и нейтронами. Квантов в данном случае было три: два заряженных (положительно и отрицательно) и один нейтральный. Они имели нулевую массу и единичный спин (то есть были векторными бозонами) и перемещались со скоростью света.

Теория B-полей, как их окрестили соавторы, была очень красива, но не выдерживала испытания опытом. Нейтральный B-бозон можно было отождествить с фотоном, но его заряженные собратья оставались не при деле. Согласно квантовой механике, посредниками в переносе короткодействующих сил могут быть лишь достаточно массивные виртуальные частицы. Радиус ядерных сил не превышает 10 –13 см, и безмассовые бозоны Янга и Миллса явно не могли претендовать на роль их переносчиков. К тому же экспериментаторы никогда не регистрировали таких частиц, хотя в принципе заряженные безмассовые бозоны легко обнаружить. Янг и Миллс доказали, что локальные калибровочные симметрии «на бумаге» могут порождать силовые поля неэлектромагнитной природы, но физическая реальность этих полей была чистой гипотезой.

Электрослабое двуединство

Следующий шаг к бозону Хиггса был сделан в 1957 году. К тому времени теоретики (тот же Янг и Ли Дзундао) предположили, а экспериментаторы доказали, что при бета-распадах не сохраняется четность (иначе говоря, нарушается зеркальная симметрия). Этот неожиданный результат заинтересовал многих физиков, среди которых был и Джулиан Швингер, один из создателей квантовой электродинамики. Он выдвинул гипотезу, что слабые взаимодействия между лептонами (до кварков тогда наука еще не дошла!) переносятся тремя векторными бозонами - фотоном и парой заряженных частиц, аналогичных B-бозонам. Отсюда следовало, что эти взаимодействия состоят в партнерстве с электромагнитными силами. Швингер этой проблемой больше не занимался, однако предложил ее своему аспиранту Шелдону Глэшоу.

Работа растянулась на четыре года. После ряда неудачных попыток Глэшоу построил модель слабого и электромагнитного взаимодействий, основанную на объединении калибровочных симметрий электромагнитного поля и полей Янга и Миллса. Помимо фотона в ней фигурировали еще три векторных бозона - два заряженных и один нейтральный. Однако эти частицы опять-таки имели нулевую массу, что создавало проблему. У слабого взаимодействия радиус на два порядка меньше, чем у сильного, и ему тем более требуются очень массивные посредники. К тому же наличие нейтрального переносчика требовало допустить возможность бета-переходов, не меняющих электрического заряда, а в то время такие не были известны. Из-за этого после публикации своей модели в конце 1961 года Глэшоу потерял интерес к объединению слабого и электромагнитного взаимодействий и переключился на другие темы.

Гипотеза Швингера заинтересовала и пакистанского теоретика Абдуса Салама, который вместе с Джоном Уордом построил модель, похожую на модель Глэшоу. Он тоже столкнулся с безмассовостью калибровочных бозонов и даже придумал способ ее устранения. Салам знал, что их массы нельзя ввести «от руки», поскольку теория становилась ненормируемой, но рассчитывал обойти это затруднение с помощью спонтанного нарушения симметрии, так чтобы решения уравнений движения бозонов не обладали калибровочной симметрией, присущей самим уравнениям. Этой задачей он заинтересовал американца Стивена Вайнберга.

Но в 1961 году английский физик Джефри Голдстоун показал, что в релятивистских квантовых теориях поля спонтанное нарушение симметрии вроде бы неизбежно порождает безмассовые частицы. Салам и Вайнберг попытались опровергнуть теорему Голдстоуна, но лишь усилили ее в собственной работе. Загадка выглядела неразрешимой, и они занялись другими областями физики.

Хиггс и другие

Помощь пришла от специалистов по физике конденсированных сред. В 1961 году Ёитиро Намбу отметил, что при переходе нормального металла в сверхпроводящее состояние прежняя симметрия спонтанно нарушается, но при этом не появляется никаких безмассовых частиц. Спустя два года Филип Андерсон на том же примере отметил, что если электромагнитное поле не подчиняется теореме Голдстоуна, то того же можно ожидать и от других калибровочных полей с локальной симметрией. Он даже предсказал, что голдстоуновские бозоны и бозоны полей Янга и Миллса могут как-то ликвидировать друг друга, оставляя после себя массивные частицы.

Этот прогноз оказался пророческим. В 1964 году его оправдали физики из брюссельского Свободного университета Франсуа Энглерт и Роджер Броут, Питер Хиггс и сотрудники лондонского Имперского колледжа Джерри Гуральник, Роберт Хаген и Томас Киббл. Они не только показали, что в полях Янга–Миллса не соблюдаются условия применимости теоремы Голдстоуна, но и нашли способ снабдить возбуждения этих полей ненулевой массой, который сейчас называют механизмом Хиггса.

Эти замечательные работы заметили и оценили отнюдь не сразу. Лишь в 1967 году Вайнберг построил единую модель электрослабого взаимодействия, в которой тройка векторных бозонов получает массу на основе механизма Хиггса, а годом позже это же сделал и Салам. В 1971 году голландцы Мартинус Велтман и Герард "т Хоофт доказали, что эта теория поддается перенормировке и, следовательно, имеет четкий физический смысл. Она прочно встала на ноги после 1973 года, когда в пузырьковой камере Gargamelle (CERN, Швейцария) экспериментаторы зарегистрировали так называемые слабые нейтральные токи, указывающие на существование незаряженного промежуточного бозона (прямая регистрация всех трех векторных бозонов была осуществлена в CERN лишь в 1982–1983 годах). Глэшоу, Вайнберг и Салам получили за нее Нобелевские премии в 1979 году, Велтман и "т Хоофт - в 1999. Эта теория (а вместе с нею и бозон Хиггса) уже давно стала неотъемлемой частью Стандартной модели элементарных частиц.

Механизм Хиггса

В основе механизма Хиггса лежат скалярные поля с бесспиновыми квантами - хиггсовские бозоны. Как считается, они возникли спустя мгновения после Большого взрыва и теперь заполняют всю Вселенную. Такие поля обладают наименьшей энергией при ненулевой величине - это и есть их устойчивое состояние.

Нередко пишут, что элементарные частицы обретают массу в результате торможения хиггсовским полем, но это чересчур механистическая аналогия. В теории электрослабого взаимодействия фигурируют четыре хиггсовских поля (каждое со своими квантами) и четыре векторных бозона - два нейтральных и два заряженных, которые сами по себе не имеют массы. Три бозона, оба заряженных и один нейтральный, поглощают по одному хиггсу и в результате обретают массу и способность переносить короткодействующие силы (их обозначают символами W + , W – и Z 0). Последний бозон ничего не поглощает и остается безмассовым - это фотон. «Съеденные» хиггсы ненаблюдаемы (физики их называют «духами»), в то время как их четвертый собрат должен наблюдаться при энергиях, достаточных для его рождения. В общем, это именно те процессы, которые ухитрился предсказать Андерсон.

Неуловимая частица

Первые серьезные попытки отловить бозон Хиггса были предприняты на рубеже ХХ и ХХI веков на Большом электронно-позитронном коллайдере (Large Electron-Positron Collider , LEP) в ЦЕРНе. Эти эксперименты стали воистину лебединой песней замечательной установки, на которой с беспрецедентной точностью были определены массы и времена жизни тяжелых векторных бозонов.

Стандартная модель позволяет предсказать каналы рождений и распадов хиггсовского бозона, но не дает возможности вычислить его массу (которая, к слову, возникает из его способности к самодействию). По самым общим оценкам, она не должна быть меньше 8–10 ГэВ и больше 1000 ГэВ. К началу сеансов на LEP большинство физиков полагало, что скорее всего диапазон составляет 100–250 ГэВ. Эксперименты LEP подняли нижний порог до 114,4 ГэВ. Многие специалисты считали и считают, что если бы этот ускоритель проработал дольше и процентов на десять увеличил энергию сталкивающихся пучков (что было технически возможно), бозон Хиггса удалось бы зарегистрировать. Однако руководство ЦЕРН не захотело отсрочить запуск Большого адронного коллайдера, который предстояло соорудить в этом же туннеле, и в конце 2000 года LEP был закрыт.

Загон для бозона

Многочисленные эксперименты один за другим исключали возможные диапазоны масс бозона Хиггса. На ускорителе LEP был установлен нижний порог - 114,4 ГэВ. На «Тэватроне» исключили массы, превышающие 150 ГэВ. Позднее диапазоны масс были уточнены до интервала 115–135 ГэВ, а в ЦЕРН на Большом адронном коллайдере сдвинули верхнюю границу до 130 ГэВ. Так что бозон Хиггса Стандартной модели, если он существует, замкнут в довольно узкие границы масс.


Следующие циклы поисков проводили на «Тэватроне» (на детекторах CDF и DZero) и на БАК. Как рассказал «ПМ» Дмитрий Денисов, один из руководителей коллаборации DZero, «Тэватрон» начал набирать статистику по хиггсам в 2007 году: «Хоть энергии и хватало, трудностей было немало. Столкновение электронов и позитронов - самый «чистый» способ отловить хиггс, ведь эти частицы не обладают внутренней структурой. Например, при аннигиляции высокоэнергетичной электронно-позитронной пары рождается Z 0 -бозон, который излучает хиггс без всякого фона (правда, в этом случае возможны реакции и погрязнее). Мы же сталкивали протоны и антипротоны, рыхлые частицы, состоящие из кварков и глюонов. Так что главная задача - выделить рождение хиггса на фоне множества похожих реакций. Аналогичная проблема существует и у команд БАК».

Следы невиданных зверей

Существует четыре основных способа (как говорят физики, канала) рождения бозона Хиггса.

Основной канал - это слияние глюонов (gg) при столкновении протонов и антипротонов, которые взаимодействуют посредством петель тяжелых топ-кварков.
Второй канал - это слияние виртуальных векторных бозонов WW или ZZ (WZ), излучаемых и поглощаемых кварками.
Третий канал рождения бозона Хиггса - это так называемое ассоциативное рождение (совместно с W- или Z-бозоном). Этот процесс иногда называют Higgsstrahlung (по аналогии с немецким термином bremsstrahlung - тормозное излучение).
И наконец, четвертый - слияние топ-кварка и антикварка (ассоциативное рождение совместно с топ-кварками, tt) из двух топ-кварк-антикварковых пар, порожденных глюонами.


«В декабре 2011 года с БАК пришли новые сообщения, - продолжает Дмитрий Денисов. - Там искали распады хиггса либо на top -кварк и его антикварк, которые аннигилируют и превращаются в пару гамма-квантов, либо на два Z 0 -бозона, каждый из которых распадается на электрон и позитрон или мюон и антимюон. Полученные данные позволяют предположить, что бозон Хиггса тянет примерно на 124–126 ГэВ, но для окончательных выводов этого недостаточно. Сейчас и наши коллаборации, и физики в ЦЕРН продолжают анализировать результаты экспериментов. Не исключено, что мы и они скоро придем к новым выводам, которые 4 марта будут представлены на международной конференции в Итальянских Альпах, и я предчувствую, что скучать там не придется».

Бозон Хиггса и конец света

Итак, в этом году можно ожидать либо открытия бозона Хиггса Стандартной модели, либо его, так сказать, аннулирования. Разумеется, второй вариант создаст потребность в новых физических моделях, но это же может произойти и в первом случае! Во всяком случае так считает один из самых авторитетных специалистов в этой области, профессор лондонского Королевского колледжа Джон Эллис. По его мнению, открытие «легкого» (не массивней 130 ГэВ) бозона Хиггса создаст неприятную проблему для космологии. Оно будет означать, что наша Вселенная нестабильна и когда-нибудь (возможно, даже в любой момент) перейдет в новое состояние с меньшей энергией. Тогда случится конец света - в самом полном значении этого слова. Остается надеяться, что либо бозон Хиггса не найдут, либо Эллис ошибается, либо Мироздание малость повременит с самоубийством.

1.2. Свойства β -излучения

Бета-излучение (b -частицы) – это поток электронов (позитронов), каждый из которых имеет заряд равный одному элементарному заряду, 4,8×10 – 10 электростатических единиц CGSE или 1,6·10 –19 кулона. Масса покоя b -частицы равна 1/1840 элементарной массы атома водорода, (в 7000 раз меньше массы α -частиц) или в абсолютных единицах 9,1×10 –28 г. Поскольку b -частицы движутся со скоростью значительно большей, чем α -частицы, равной » 0,988 (масса Эйнштейна) от скорости света, то их масса должна подсчитываться по релятивистскому уравнению:

где т о – масса покоя (9,1·10 -28 г);

V - скорость β -частицы;

C - скорость света.

Для самых быстрых β -частиц m ≈ 16 m o .

При испускании одной b -частицы порядковый номер элемента увеличивается (испускание электрона) или уменьшается (испускание позитрона) на единицу. Бета-распад обычно сопровождается g -излучением. Каждый радиоактивный изотоп испускает совокупность b -частиц весьма различной энергии, не превышающей, однако, определенной максимальной энергии, характерной для данного изотопа.

Спектры энергий b -излучения представлены на рис. 1.5, 1.6. Кроме непрерывного спектра энергий, для некоторых, радиоэлементов характерно наличие линейчатого спектра, связанного с вырыва­нием g-квантами вторичных электронов с электронных орбит атома (явление внутренней конверсии). Это происходит тогда, когда β -распад идет через промежуточный энергетический уровень, а возбуждение может сниматься не только путем испускания γ -кванта, но и путем выбивания электрона из внутренней оболочки.

Однако число b -частиц, отвечающих этим линиям, невелико.

Непрерывность бета-спектра объясняется одновременным испусканием b -частиц и нейтрино.

p = n + β + + η (нейтрино)

n = p + β - + η (антинейтрино)

Нейтрино принимает на себя часть энергии бета-распада.

Средняя энергия b -частицы равна 1/3. Е макс и колеблется между 0,25–0,45 Е макс для различ­ных веществ. Между величиной максимальной энергии Е макс b -излучения и постоянной распада l элемента Сэрджентом установлено соотношение (для Е макс > 0,5 Мэв),

l = k∙E 5 макс (1.12)

Таким образом, и для β -излучения энергия β -частицы тем больше, чем меньше период полураспада. Например:

Pb 210 (RaD) T = 22 года, Е max = 0,014 Mэв;

Bi 214 (RaC) T = 19,7 мес., Е max = 3,2 Mэв.

1.2.1. Взаимодействие β -излучения с веществом

При взаимодействии β –частиц с веществом возможны следующие случаи:

а) Ионизация атомов . Она сопровождается характеристическим излучением. Ионизационная способность β -частиц зависит от их энергии. Удельная ионизация тем больше, чем меньше энергии β -частицы. Например, при энергии β -частицы 0,04 Mэв на 1 см пути образуется 200 пар ионов; 2 Mэв – 25 пар; 3 Mэв – 4 пары.



б) Возбуждение атомов. Оно характерно для β -частиц с большой энергией, когда время взаимодействия β -частицы с электроном мало и вероятность ионизации мала; в этом случае β -частица возбуждает электрон, энергия возбуждения снимается путем испускания характеристических рентгеновских лучей, а в сцинтилляторах – значительная часть энергии возбуждения проявляется в виде вспышки – сцинции (т.е.в видимой области).

в) Упругое рассеяние . Происходит тогда, когда электрическое поле ядра (электрона) отклоняет β -частицу, при этом энергия β -частицы не меняется, меняется только направление (на малый угол);

г) Торможение электрона в кулоновском поле ядра. При этом возникает электромагнитное излучение с тем большей энергией, чем большее ускорение испытывает электрон. Так как отдельные электроны испытывают различное ускорение, то спектр тормозного излучения – непрерывный. Потери энергии на тормозное излучение определяются выражением: соотношение потерь энергии на тормозное излучение к потерям на возбуждение и ионизацию:

Таким образом, потери и тормозное излучение существенны лишь для высоких энергий электрона с большими атомными номерами.

Для большинства β -частиц максимальная энергия лежит в пределах 0,014–1,5 Mэв, мы можем считать, что на 1 см пути β -частицы образуется 100 – 200 пар ионов. α -частица на 1 см пути образует 25 – 60 тысяч пар ионов. Поэтому мы можем считать, что удельная ионизационная способность β- излучения на два порядка меньше, чем у α-излучения. Меньше ионизация – медленнее теряется энергия, так как ионизационная способность (и вероятность возбуждения) β -частицы на 2 порядка меньше, значит и тормозится она на 2 порядка медленнее, т.е., приблизительно пробег β -частицы на 2 порядка больше, чем для α- частицы. 10 мг/см 2 ·100 = 1000 мг/см 2 ≈ 1 г/см 2 .

Барионы (от греческого «барис» - тяжелый) - тяжёлые элементарные частицы, сильно взаимодействующие фермионы, состоящие из трёх кварков. Наиболее стабильные барионы - протон и нейтрон. К основным барионам относятся: протон (uud), антипротон, нейтрон (ddu), антинейтрон, ламбда-гиперион, сигма-гиперион, кси-гиперион, омега-гиперион.

Сотрудники международной коллаборации DZero Национальной лаборатории ускорителей имени Ферми, которая входит в систему исследовательских центров США, открыли новую элементарную частицу-барион. Частица, получившая название «кси-би-минус барион»(Ξ-b), по-своему уникальна. Это не просто очередной барион, содержащий b-кварк, а первая частица, содержащая три кварка трех разных семейств — d-кварк, s-кварк и b-кварк.

Есть у неё и другое название — «каскад-би». Барион несет отрицательный заряд и по массе примерно в шесть раз превосходит протон (масса частицы 5.774±0.019 ГэВ).

Для регистрации новой частицы ученым пришлось проанализировать треки за пять лет работы ускорителя. В итоге удалось обнаружить 19 событий, которые свидетельствовали об образовании нового бариона.

До этого ученые уже получали барион, состоящий из трех различных кварков — лямбда-би барион, состоящий из u-,d- и b- кварка, однако он содержит кварки только двух поколений (см. врез).

Таким образом, впервые за всю историю физики высоких энергий обнаружен барион, состоящий из кварков трех поколений или семейств. Каскад-би состоит из одного d-кварка («нижний» кварк, относящийся к первому семейству), одного s-кварка («странный» кварк, второе семейство) и одного b-кварка («прелестный» кварк, третье семейство). Именно поэтому новая частица Ξ-b по-настоящему уникальна.

Интересно, что, хотя коллаборация базируется в Фермилабе, обладающей мощным ускорителем Тэватрон, нынешнее открытие сделано в Европе — на Большом электрон-позитронном коллайдере в ЦЕРНе (LEP)

Таким образом, ученые продолжают поиски на «втором этаже» барионной пирамиды, открывая барионы, содержащие в себе один «прелестный» или «дно»-кварк (b).

Впервые такие частицы получила тоже команда из Фермилаба. В прошлом году Международная коллаборация CDF, проводящая эксперименты на базе Национальной ускорительной лаборатории имени Ферми министерства энергетики США (Department of Energy"s Fermi National Accelerator Laboratory), объявила об открытии двух новых элементарных частиц, относящихся к классу барионов. Частицы назвали Σ+b и Σ-b.

В экспериментах физики сталкивали протоны с антипротонами, разгоняя их на самом мощном на настоящий момент ускорителе Теватрон.

На этом ускорителе проводятся эксперименты при соударении пучка протонов, имеющих энергию 1 ТэВ, со встречным пучком антипротонов той же энергии. При столкновении с такой энергией возникал b-кварк, который потом, взаимодействуя с кварками протонов и антипротонов, образовывал две новые частицы.

Эксперимент зарегистрировал 103 события, связанных с рождением положительно заряженных u-u-b частицы (Σ+b) и 134 рождения отрицательно заряженных d-d-b частицы (Σ-b). Для обнаружения такого количества событий ученым пришлось проанализировать треки от 100 триллионов столкновений за пять лет работы Теватрона.

Естественный радиоактивный b-распад заключается в самопроизвольном распаде ядер с испусканием b-частиц - электронов. Правило смещения для

естественного (электронного) b-распада описывается выражением:

Z X A ® Z + 1 Y A + - 1 e 0 . (264)

Исследование энергетического спектра b - частиц показало, что, в отличие от спектра a-частиц, b-частицы имеют непрерывный спектр от 0 до Е max . При открытии b-распада необходимо было объяснить следующее:

1) почему материнское ядро всегда теряет энергию Е max , а энергия b-частиц может быть меньше Е max ;

2) как образуется -1 e 0 при b-распаде?, ведь в состав ядра электрон не входит;

3) если при b-распаде вылетает - 1 e 0 , то нарушается закон сохранения момента импульса: число нуклонов (А ) не изменяется, но электрон обладает спином ½ħ, следовательно, в правой части соотношения (264) спин отличается от спина левой части соотношения на ½ ħ.

Для выхода из затруднения в 1931г. Паули предположил, что кроме - 1 e 0 при b-распаде вылетает ещё одна частица – нейтрино (о о), масса которой много меньше массы электрона, заряд равен 0 и спин s = ½ ħ. Эта частица уносит энергию Е max - Е β и обеспечивает выполнение законов сохранения энергии и импульса. Экспериментально о о было обнаружено в 1956 году. Трудности обнаружения о о связаны с его малой массой и нейтральностью. В связи с этим о о может проходить огромные расстояния до поглощения веществом. В воздухе один акт ионизации под действием нейтрино происходит на расстоянии около 500 км. Пробег о о с энергией 1 МэВ в свинце ~10 18 м. о о можно обнаружить косвенным путём с использованием закона сохранения импульса при b-распаде: сумма векторов импульсов - 1 e 0 , о о и ядра отдачи должна быть равна 0. Опыты подтвердили это ожидание.

Так как при b-распаде число нуклонов не изменяется, а заряд увеличивается на 1, единственное объяснение b-распада может быть следующее: один из o n 1 ядра превращается в 1 р 1 с испусканием - 1 e 0 и нейтрино:

o n 1 → 1 р 1 + - 1 e 0 + о о (265)

Установлено, что при естественном b-распаде испускается электронное антинейтрино - о о. Энергетически реакция (265) выгодна, так как масса покоя o n 1 больше массы покоя 1 р 1 . Следовало ожидать, что и свободный o n 1 радиоактивен. Это явление действительно было обнаружено в 1950 году в потоках нейтронов больших энергий, возникающих в ядерных реакторах, и служит подтверждением механизма b-распада по схеме (262).

Рассмотренный b-распад называется электронным. В 1934 г. Фредерик и Жолио-Кюри обнаружили искусственный позитронный b-распад, при котором из ядра вылетает античастица электрона – позитрон и нейтрино (см. реакцию (263)). В этом случае один из протонов ядра превращается в нейтрон:


1 р 1 → o n 1 + + 1 e 0 + о о (266)

Для свободного протона такой процесс невозможен, по энергетическим соображениям, т.к. масса протона меньше массы нейтрона. Однако в ядре протон может заимствовать требуемую энергию от других нуклонов ядра. Таким образом реакция (344) может протекать как внутри ядра, так и для свободного нейтрона, а реакция (345) происходит только внутри ядра.

Третий вид b-распада – К-захват. В этом случае ядро спонтанно захватывает один из электронов К-оболочки атома. При этом один из протонов ядра превращается в нейтрон по схеме:

1 р 1 + - 1 e 0 → o n 1 + о о (267)

При этом виде b-распада из ядра вылетает только одна частица - о о. К-захват сопровождается характеристическим рентгеновским излучением.

Таким образом при всех видах b-распада, протекающим по схемам (265) – (267), выполняются все законы сохранения: энергии, массы, заряда, импульса, момента импульса.

Превращения нейтрона в протон и электрон и протона в нейтрон и позитрон обусловлены не внутриядерными силами, а силами, действующими внутри самих нуклонов. Связанные с этими силами взаимодействия называются слабыми. Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного. О силе взаимодействия можно судить по скорости протекания процессов, которые оно вызывает при энергиях ~1 ГэВ, характерных для физики элементарных частиц. При таких энергиях процессы, обусловленные сильным взаимодействием, происходят за время ~10 -24 с, электромагнитный процесс за время ~10 -21 с, а время, характерное для процессов, происходящих за счёт слабого взаимодействия, гораздо больше: ~10 -10 с, так что в мире элементарных частиц слабые процессы протекают чрезвычайно медленно.

При прохождении b-частиц через вещество они теряют свою энергию. Скорость b-электронов, возникающих при b-распаде, может быть очень велика – сравнима со скоростью света. Их энергетические потери в веществе происходят за счёт ионизации и тормозного излучения. Тормозное излучение является основным источником потерь энергии для быстрых электронов , в то время как для протонов и более тяжёлых заряженных ядер тормозные потери несущественны. При малых энергиях электронов основным источником потерь энергии являются ионизационные потери. Существует некоторая критическая энергия электронов, при которой тормозные потери становятся равными ионизационным. Для воды она равна около 100 МэВ, для свинца – около 10 МэВ, для воздуха – несколько десятков МэВ. Поглощение потока b-частиц с одинаковыми скоростями в однородном веществе подчиняется экспоненциальному закону N = N 0 e - m x , где N 0 и N – число b-частиц на входе и выходе слоя вещества толщиной х , m - коэффициент поглощения. b _ излучение сильно рассеивается в веществе, поэтому m зависит не только от вещества, но и от размеров и формы тел, на которые падает b _ излучение. Ионизационная способность b-лучей невелика, примерно в 100 раз меньше чем у a-частиц. Поэтому и проникающая способность b-частиц намного больше, чем у a-частиц. В воздухе пробег b-частиц может достигать 200 м, в свинце до 3 мм. Так как b-частицы обладают очень малой массой и единичным зарядом, то их траектория движения в среде – ломаная линия.

12.4.6 γ - лучи

Как отмечалось в п.12.4.1, γ - лучи представляют собой жёсткое электромагнитное излучение с ярко выраженными корпускулярными свойствами. Понятия γ-распад не существует. γ - лучи сопровождают a- и b-распад всегда, когда дочернее ядро оказывается в возбуждённом состоянии. Для каждого сорта атомных ядер имеется дискретный набор частот g-излучений, определяемый совокупностью энергетических уровней в атомном ядре. Итак, a- и g-частицы имеют дискретные спектры излучения, а

b-частицы - сплошные спектры. Наличие линейчатого спектра γ- и a- лучей имеет принципиальное значение и является доказательством того, что атомные ядра могут находиться в определённых дискретных состояниях.

Поглощение γ - лучей веществом происходит по закону:

I = I 0 e - m x , (268)

где I и I 0 - интенсивности γ - лучей до и после прохождения через слой вещества толщиной х ; μ – коэффициент линейного поглощения. Поглощение γ - лучей веществом происходит, в основном, за счёт трёх процессов: фотоэффекта, комптоновского эффекта и образования электронно-позитронных (e + e - ) пар. Поэтому μ можно представить в виде суммы:

μ = μ ф + μ к + μ п. (269)

При поглощении γ – кванта электронной оболочкой атомов происходит фотоэффект, в результате которого электроны вырываются из внутренних слоёв электронной оболочки. Этот процесс называется фотоэлектрическим поглощением γ - лучей. Расчёты показывают, он существенен при энергиях γ - квантов ≤ 0,5 МэВ. Коэффициент поглощения μ ф зависит от атомного номера Z вещества и длины волны γ - лучей. По мере всё большего увеличения энергии γ - квантов по сравнению с энергией связи электронов в атомах, в молекулах или в кристаллической решётке вещества взаимодействие γ - фотонов с электронами всё более приближается по своему характеру к взаимодействию со свободными электронами. В этом случае происходит комптоновское рассеяние γ - лучей на электронах, характеризуемое коэффициентом рассеяния μ к.

При увеличении энергии γ - квантов до значений, превышающих удвоенную энергию покоя электрона 2m o c 2 (1,022 МэВ), возникает аномально большое поглощение γ - лучей, связанное с образованием электронно-позитронных пар, особенно в тяжёлых веществах. Этот процесс характеризуется коэффициентом поглощения μ п .

Само γ-излучение обладает относительно слабой ионизирующей способностью. Ионизацию среды производят, в основном, вторичные электроны, появляющиеся при всех трёх процессах. γ - лучи - одно из наиболее проникающих излучений. Например, для более жёстких γ - лучей толщина слоя половинного поглощения равна в свинце 1,6 см, в железе – 2,4 см, в алюминии – 12 см, в земле – 15 см.