Меню
Бесплатно
Главная  /  Бизнес  /  Математическое ожидание непрерывной случайной величины. Пример решения

Математическое ожидание непрерывной случайной величины. Пример решения

Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

Каждая случайная величина полностью определяется своей функцией распределения .

Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

Функция распределения любой случайной величины обладает следующими свойствами:

Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

x 1 x 2 x i
p 1 p 2 p i

называется распределением дискретной случайной величины .

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Пример 2.1. Случайная величина X задана функцией распределения

Найти вероятность того, что в результате испытания X примет значения, заключенные в промежутке (2,5; 3,6).

Решение: Х в промежуток (2,5; 3,6) можно определить двумя способами:

Пример 2.2. При каких значениях параметров А и В функция F (x ) = A + Be - x может быть функцией распределения для неотрицательных значений случайной величины Х .

Решение: Так как все возможные значения случайной величины Х принадлежат интервалу , то для того, чтобы функция была функцией распределения для Х , должно выполняться свойство:

.

Ответ: .

Пример 2.3. Случайная величина X задана функцией распределения

Найти вероятность того, что в результате четырех независимых испытаний величина X ровно 3 раза примет значение, принадлежащее интервалу (0,25;0,75).

Решение: Вероятность попадания величины Х в промежуток (0,25;0,75) найдем по формуле:

Пример 2.4. Вероятность попадания мячом в корзину при одном броске равна 0,3. Составить закон распределения числа попаданий при трех бросках.

Решение: Случайная величина Х – число попаданий в корзину при трех бросках – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х

Х :

Пример 2.5. Два стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна 0,5, вторым – 0,4. Составить закон распределения числа попаданий в мишень.

Решение: Найдем закон распределения дискретной случайной величины Х – числа попаданий в мишень. Пусть событие – попадание в мишень первым стрелком, а – попадание вторым стрелком, и - соответственно их промахи.



Составим закон распределения вероятностей СВ Х :

Пример 2.6. Испытываются 3 элемента, работающих независимо друг от друга. Длительности времени (в часах) безотказной работы элементов имеют функции плотности распределения: для первого: F 1 (t ) =1-e - 0,1 t , для второго: F 2 (t ) = 1-e - 0,2 t , для третьего: F 3 (t ) =1-e - 0,3 t . Найти вероятность того, что в интервале времени от 0 до 5 часов: откажет только один элемент; откажут только два элемента; откажут все три элемента.

Решение: Воспользуемся определением производящей функции вероятностей :

Вероятность того, что в независимых испытаниях, в первом из которых вероятность появления события А равна , во втором и т. д., событие А появится ровно раз, равна коэффициенту при в разложении производящей функции по степеням . Найдем вероятности отказа и неотказа соответственно первого, второго и третьего элемента в интервале времени от 0 до 5 часов:

Составим производящую функцию:

Коэффициент при равен вероятности того, что событие А появится ровно три раза, то есть вероятности отказа всех трех элементов; коэффициент при равен вероятности того, что откажут ровно два элемента; коэффициент при равен вероятности того, что откажет только один элемент.

Пример 2.7. Дана плотность вероятности f (x )случайной величины X :

Найти функцию распределения F(x).

Решение: Используем формулу:

.

Таким образом, функция распределения имеет вид:

Пример 2.8. Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте.

Решение: Случайная величина Х – число элементов, отказавших в одном опыте – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х примет эти значения, найдем по формуле Бернулли:

Таким образом, получаем следующий закон распределения вероятностей случайной величины Х :

Пример 2.9. В партии из 6 деталей имеется 4 стандартных. Наудачу отобраны 3 детали. Составить закон распределения числа стандартных деталей среди отобранных.

Решение: Случайная величина Х – число стандартных деталей среди отобранных – может принимать значения: 1, 2, 3 и имеет гипергеометрическое распределение. Вероятности того, что Х

где -- число деталей в партии;

-- число стандартных деталей в партии;

число отобранных деталей;

-- число стандартных деталей среди отобранных.

.

.

.

Пример 2.10. Случайная величина имеет плотность распределения

причем и не известны, но , а и . Найдите и .

Решение: В данном случае случайная величина X имеет треугольное распределение (распределение Симпсона) на отрезке [a, b ]. Числовые характеристики X :

Следовательно, . Решая данную систему, получим две пары значений: . Так как по условию задачи , то окончательно имеем: .

Ответ: .

Пример 2.11. В среднем по 10% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Вычислить математическое ожидание и дисперсию числа таких договоров среди наудачу выбранных четырех.

Решение: Математическое ожидание и дисперсию можно найти по формулам:

.

Возможные значения СВ (число договоров (из четырех) с наступлением страхового случая): 0, 1, 2, 3, 4.

Используем формулу Бернулли, чтобы вычислить вероятности различного числа договоров (из четырех), по которым были выплачены страховые суммы:

.

Ряд распределения СВ (число договоров с наступлением страхового случая) имеет вид:

0,6561 0,2916 0,0486 0,0036 0,0001

Ответ: , .

Пример 2.12. Из пяти роз две белые. Составить закон распределения случайной величины, выражающей число белых роз среди двух одновременно взятых.

Решение: В выборке из двух роз может либо не оказаться белой розы, либо может быть одна или две белые розы. Следовательно, случайная величина Х может принимать значения: 0, 1, 2. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число роз;

-- число белых роз;

число одновременно взятых роз;

-- число белых роз среди взятых.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.13. Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди пяти наудачу выбранных из общего числа.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 0, 1, 2, 3, 4, 5 и имеет гипергеометрическое распределение. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число собранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке;

число выбранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке среди выбранных.

.

.

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.14. Из поступивших в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Найти математическое ожидание и дисперсию числа просмотренных часов.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 1, 2, 3, 4. Вероятности того, что Х примет эти значения, найдем по формуле:

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Теперь вычислим числовые характеристики величины :

Ответ: , .

Пример 2.15. Абонент забыл последнюю цифру нужного ему номера телефона, однако помнит, что она нечетная. Найти математическое ожидание и дисперсию числа сделанных им наборов номера телефона до попадания на нужный номер, если последнюю цифру он набирает наудачу, а набранную цифру в дальнейшем не набирает.

Решение: Случайная величина может принимать значения: . Так как набранную цифру абонент в дальнейшем не набирает, то вероятности этих значений равны .

Составим ряд распределения случайной величины:

0,2

Вычислим математическое ожидание и дисперсию числа попыток набора номера:

Ответ: , .

Пример 2.16. Вероятность отказа за время испытаний на надежность для каждого прибора серии равна p . Определить математическое ожидание числа приборов, давших отказ, если испытанию подверглись N приборов.

Решение: Дискретная случайная величина X - число отказавших приборов в N независимых испытаниях, в каждом из которых вероятность появления отказа равна p, распределена по биномиальному закону. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Пример 2.17. Дискретная случайная величина X принимает 3 возможных значения: с вероятностью ; с вероятностью и с вероятностью . Найти и , зная, что M(X ) = 8.

Решение: Используем определения математического ожидания и закона распределения дискретной случайной величины:

Находим: .

Пример 2.18. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание случайной величины X – числа партий, в каждой из которых содержится ровно 4 стандартных изделия, если проверке подлежат 50 партий.

Решение: В данном случае все проводимые опыты независимы, а вероятности того, что в каждой партии содержится ровно 4 стандартных изделия, одинаковы, следовательно, математическое ожидание можно определить по формуле:

,

где - число партий;

Вероятность того, что в партии содержится ровно 4 стандартных изделия.

Вероятность найдем по формуле Бернулли:

Ответ: .

Пример 2.19. Найти дисперсию случайной величины X – числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M (X ) = 0,9.

Решение: Задачу можно решить двумя способами.

1) Возможные значения СВ X : 0, 1, 2. По формуле Бернулли определим вероятности этих событий:

, , .

Тогда закон распределения X имеет вид:

Из определения математического ожидания определим вероятность :

Найдем дисперсию СВ X :

.

2) Можно использовать формулу:

.

Ответ: .

Пример 2.20. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15; 25).

Решение: Вероятность попадания нормальной случайной величины Х на участок от до выражается через функцию Лапласа:

Пример 2.21. Дана функция:

При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины X ? Найти математическое ожиданий и дисперсию случайной величины X .

Решение: Для того, чтобы функция была плотностью распределения некоторой случайной величины , она должна быть неотрицательна, и она должна удовлетворять свойству:

.

Следовательно:

Вычислим математическое ожидание по формуле:

.

Вычислим дисперсию по формуле:

T равна p . Необходимо найти математическое ожидание и дисперсию этой случайной величины.

Решение: Закон распределения дискретной случайной величины X - числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события равна , называют биномиальным. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события А одном испытании:

.

Пример 2.25. Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0.25. Определить среднее квадратическое отклонение числа попаданий при трех выстрелах.

Решение: Так как производится три независимых испытания, и вероятность появления события А (попадания) в каждом испытании одинакова, то будем считать, что дискретная случайная величина X - число попаданий в мишень – распределена по биномиальному закону.

Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

Пример 2.26. Среднее число клиентов, посещающих страховую компанию за 10 мин., равно трем. Найти вероятность того, что в ближайшие 5 минут придет хотя бы один клиент.

Среднее число клиентов, пришедших за 5 минут: . .

Пример 2.29. Время ожидания заявки в очереди на процессор подчиняется показательному закону распределения со средним значением 20 секунд. Найти вероятность того, что очередная (произвольная) заявка будет ожидать процессор более 35 секунд.

Решение: В этом примере математическое ожидание , а интенсивность отказов равна .

Тогда искомая вероятность:

Пример 2.30. Группа студентов в количестве 15 человек проводит собрание в зале, в котором 20 рядов по 10 мест в каждом. Каждый студент занимает место в зале случайным образом. Какова вероятность того, что не более трех человек будут находиться на седьмом месте ряда?

Решение:

Пример 2.31.

Тогда согласно классическому определению вероятности:

где -- число деталей в партии;

-- число нестандартных деталей в партии;

число отобранных деталей;

-- число нестандартных деталей среди отобранных.

Тогда закон распределения случайной величины будет такой.

Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта . Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL .

Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

Генеральная совокупность и случайная величина

Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.

Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.

В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.

Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).

Функция распределения

Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X

F(x) = P(X

Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая - 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

Типичный график Функции распределения для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см. файл примера ):

В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения (Cumulative Distribution Function , CDF ).

Приведем некоторые свойства Функции распределения:

  • Функция распределения F(x) изменяется в интервале , т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
  • Функция распределения – неубывающая функция;
  • Вероятность того, что случайная величина приняла значение из некоторого диапазона плотность вероятности равна 1/(0,5-0)=2. А для с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

    Напомним, что плотность распределения является производной от функции распределения , т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что плотность распределения >1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере ).

    Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.

    Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.

    Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).

    Вычисление плотности вероятности с использованием функций MS EXCEL

    Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.

    Найдем плотность вероятности для N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .

    Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

    Вычисление вероятностей с использованием функций MS EXCEL

    1) Найдем вероятность, что случайная величина, распределенная по (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.

    НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.
    Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

    2) Найдем вероятность, что случайная величина, распределенная по , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.

    В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.

    3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .

    Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье функции распределения найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

    В MS EXCEL используйте формулу =НОРМ.СТ.ОБР(0,5) =0.

    Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.

    Обратная функция распределения вычисляет , которые используются, например, при . Т.е. в нашем случае число 0 является 0,5-квантилем нормального распределения . В файле примера можно вычислить и другой квантиль этого распределения. Например, 0,8-квантиль равен 0,84.

    В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).

    Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье .

    Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают .Функция распределения определяет вероятность того, что случайная величина принимает значения, меньшие фиксированного действительного числа, т. е.. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Ее еще называют интегральной функцией распределения.

    Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку оси(рис. 6), которая в результате испытания может занять то или иное положение на этой оси, то функция распределенияесть вероятность того, что случайная точкав результате испытания попадет левее точки.

    Для дискретной случайной величины , которая может принимать значения,, … ,, функция распределения имеет вид

    ,

    где неравенство под знаком суммы означает, что суммирование распространяется на все те значения, которые по своей величине меньше. Из этой формулы следует, что функция распределения дискретной случайной величиныразрывна и возрастает скачками при переходе через точки,, … ,, причем величина скачка равна вероятности соответствующего значения (рис. 7). Сумма всех скачков функции распределения равна единице.

    Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8).

    Рис. 7. Рис. 8.

    Рассмотрим общие свойства функций распределения.

    Свойство 1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей:

    Справедливость этого свойства вытекает из того, что функция распределения определена как вероятность случайного события, состоящего в том, что.

    Свойство 2. Вероятность попадания случайной величины в интервал равна разности значений функции распределения на концах этого интервала, т. е.

    Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

    Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. при .

    Свойство 4. На минус бесконечности функция распределения рана нулю, а на плюс бесконечности функция распределения рана единице, т. е. ,.

    Пример 1. Функция распределения непрерывной случайной величины задана выражением

    Найти коэффициент и построить график. Определить вероятность того, что случайная величинав результате опыта примет значение на интервале.

    Решение. Так как функция распределения непрерывной случайной величины непрерывна, то приполучим:. Отсюда. График функцииизображен на рис. 9.

    Исходя из второго свойства функции распределения, имеем:

    .

    4. Плотность распределения вероятности и ее свойства.

    Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности или дифференциальной функцией распределения случайной величины.

    Плотность распределения равна производной от функции распределения, т. е.

    .

    Смысл плотности распределения состоит в том, что она указывает на то, как часто появляется случайная величинав некоторой окрестности точкипри повторении опытов. Кривая, изображающая плотность распределенияслучайной величины, называетсякривой распределения .

    Рассмотрим свойства плотности распределения.

    Свойство 1. Плотность распределения неотрицательна, т. е.

    Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от до, т. е.

    .

    Свойство 3. Вероятность попадания непрерывной случайной величины на участокравна интегралу от плотности распределения, взятому по этому участку, т. е.

    .

    Свойство 4. Интеграл в бесконечных пределах от плотности распределения равен единице:

    .

    Пример 2. Случайная величина подчинена закону распределения с плотностью

    Определить коэффициент ; построить график плотности распределения; найти вероятность попадания случайной величины на участок отдо; определить функцию распределения и построить ее график.

    Решение. Площадь, ограниченная кривой распределения, численно равна

    .

    Учитывая свойство 4 плотности распределения, находим: . Следовательно, плотность распределения может быть выражена так:

    График плотности распределения изображен на рис. 10. По свойству 3 имеем

    .

    Для определения функции распределения воспользуемся свойством 2:

    .

    Таким образом, имеем

    График функции распределения изображен на рис. 11.

    Содержание статьи

    ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ – плотность вероятности распределения частиц макроскопической системы по координатам, импульсам или квантовым состояниям. Функция распределения является основной характеристикой самых разнообразных (не только физических) систем, которым свойственно случайное поведение, т.е. случайное изменение состояния системы и, соответственно, ее параметров. Даже в стационарных внешних условиях само состояние системы может быть таким, что результат измерения некоторого его параметра является случайной величиной. Функция распределения в подавляющем большинстве случаев содержит в себе всю возможную и потому исчерпывающую информацию о свойствах таких систем.

    В математической теории вероятностей и математической статистике функция распределения и плотность вероятности отличаются друг от друга, но однозначно связаны между собой. Ниже речь пойдет почти исключительно о плотности вероятности, которую (согласно принятой в физике давней традиции) называют плотностью распределения вероятности или функцией распределения, ставя знак равенства между этими двумя терминами.

    Случайное поведение в той или иной мере характерно для всех квантовомеханических систем: элементарные частицы, атомы молекулы и т.п. Однако случайное поведение – это не специфическая черта только квантовомеханических систем, многие чисто классические системы обладают этим свойством.

    Примеры.

    При бросании монеты на твердую горизонтальную поверхность, неясно, как она ляжет: цифрой вверх или гербом. Известно, что вероятности этих событий, при определенных условиях, равны 1/2. При бросании игральной кости нельзя с уверенностью сказать, какая из шести цифр окажется на верхней грани. Вероятность выпадения каждой из цифр при определенных предположениях (кость – однородный куб без сколотых ребер и вершин падает на твердую, гладкую горизонтальную поверхность) равна 1/6.

    Хаотичность движения молекул в наибольшей степени проявляется в газе. Даже в стационарных внешних условиях, флуктуируют (меняются случайным образом) точные значения макроскопических параметров, и только их средние значения при этом постоянны. Описание макроскопических систем на языке средних значений макропараметров и составляет суть термодинамического описания ().

    Пусть есть идеальный одноатомный газ и три его (еще не усредненных) макроскопических параметра: N – число атомов, движущихся внутри сосуда, занятого газом; P –давление газа на стенку сосуда и – внутренняя энергия газа. Газ идеальный и одноатомный, поэтому его внутренняя энергия есть просто сумма кинетических энергий поступательного движения атомов газа.

    Число N флуктуирует, по крайней мере, из-за процесса сорбции (прилипания к стенке сосуда при соударении с ней) и десорбции (процесса отлипания, когда молекула отрывается от стенки сама по себе или в результате удара по ней другой молекулы), наконец, процесса образования кластеров – короткоживущих комплексов из нескольких молекул. Если бы Можно было измерять N мгновенно и точно, то полученная зависимость N (t ) была бы похожей на изображенную на рисунке.

    Размах флуктуаций на рисунке для наглядности сильно завышен, но при небольшом среднем значении (бN с ~ 10 2) числа частиц в газе он примерно таким и будет.

    Если выбрать маленькую площадку на стенке сосуда измерять силу, действующую на эту площадку в результате ударов молекул газа, находящегося в сосуде, то отношение среднего значения нормальной к площадке компоненты этой силы к площади площадки и принято называть давлением. В разные моменты времени к площадке будет подлетать разное количество молекул, причем с разными скоростями. В результате, если бы можно было измерять эту силу мгновенно и точно, была бы картина, подобная изображенной на рисунке, нужно только изменить обозначения по вертикальной оси:

    N (t ) Ю P (t ) и бN (t )с Ю бP (t )с.

    Практически все то же справедливо и для внутренней энергии газа , только процессы, приводящие к случайным изменениям данной суммы другие. Например, подлетая к стенке сосуда, молекула газа сталкивается не с абстрактной абсолютно упруго и зеркально отражающей стенкой, а с одной из частиц, составляющих материал этой стенки. Пусть стенка стальная, тогда это ионы железа, колеблющиеся около положений равновесия – узлов кристаллической решетки. Если молекула газа подлетает к стенке на той фазе колебаний иона, когда он движется ей навстречу, то в результате соударения молекула отлетит от стенки со скоростью большей чем подлетала. Вместе с энергией этой молекулы увеличится и внутренняя энергия газа E . Если молекула сталкивается с ионом, движущемся в том же направлении, что и она, то отлетит эта молекула со скоростью меньшей, чем та, с которой она полетала. Наконец, молекула может попасть в междуузелье (пустое место между соседними узлами кристаллической решетки) и застрять там, так, что даже сильным нагревом ее не извлечь оттуда. В последних двух случаях внутренняя энергия газа E уменьшится. Следовательно, E (t ) – также случайная функция времени и – среднее значение этой функции.

    Броуновское движение.

    Определив положение броуновской частицы в некоторый момент времени t 1, можно точно предсказать только то, что ее положение в последующий момент времени t 2 не превышает (t 2 – t 1)·c , где c – скорость света в вакууме.

    Различают случаи дискретного и непрерывного спектра состояний и, соответственно, переменной x . Под спектром значений некоторой переменной понимается вся совокупность возможных ее значений.

    В случае дискретного спектрасостояний для задания распределения вероятностей нужно, во-первых, указать полный набор возможных значений случайной переменной

    x 1, x 2, x 3,… x k,… (1)

    и, во-вторых, их вероятности:

    W 1, W 2, W 3,… W k,… (2)

    Сумма вероятностей всех возможных событий должна быть равна единице (условие нормировки)

    Описание распределения вероятностей соотношениями (1) – (3) невозможно в случае непрерывного спектра состояний и, соответственно, непрерывного спектра возможных значений переменной x . Пусть x принимает все возможные действительные значения в интервале

    x О [a , b ] (4)

    где a и b необязательно конечны. Например, для модуля вектора скорости молекулы газа V О , лежащему внутри всего интервала возможных значений, т.е. x О [x , x + Dx ] О [a , b ] (5)

    Тогда вероятность DW (x , Dx ) попадания x в интервал (5) равна

    Здесь N – полное число измерений x , а Dn (x , Dx ) – число результатов, попавших в интервал (5).

    Вероятность DW естественно зависит от двух аргументов: x – положения интервала внутри [a , b ] и Dx – его длины (предполагается, хотя это совершенно необязательно, что Dx > 0). Например, вероятность получения точного значения x , другими словами, вероятность попадания x в интервал нулевой длины есть вероятность невозможного события и потому равна нулю: DW (x , 0) = 0

    С другой стороны, вероятность получить значение x где-то (все равно где) внутри всего интервала [a , b ] есть вероятность достоверного события (уж что-нибудь всегда получается) и потому равна единице (принимается, что b > a ): DW (a , b a ) = 1.

    Пусть Dx мало. Критерий достаточной малости зависит от конкретных свойств системы, которую описывает распределение вероятностей DW (x , Dx ). Если Dx мало, то функцию DW (x , Dx ) можно разложить в ряд по степеням Dx :

    Если нарисовать график зависимости DW (x , Dx ) от второго аргумента Dx , то замена точной зависимости приближенным выражением (7) означает замену (на небольшом участке) точной кривой куском параболы (7).

    В (7) первое слагаемое равно нулю точно, третье и последующие слагаемые при достаточной малости Dx можно опустить. Введение обозначения

    дает важный результат DW (x , Dx ) » r(x )·Dx (8)

    Соотношение (8), выполняемое тем точнее, чем меньше Dx означает, что при малой длине интервала, вероятность попадания в этот интервал пропорциональна его длине.

    Можно еще перейти от малого, но конечного Dx к формально бесконечно малому dx , с одновременной заменой DW (x , Dx ) на dW (x ). Тогда приближенное равенство (8) превращается в точное dW (x ) = r(x dx (9)

    Коэффициент пропорциональности r(x ) имеет простой смысл. Как видно из (8) и (9), r(x ) численно равно вероятности попадания x в интервал единичной длины. Поэтому одно из названий функции r(x ) – плотность распределения вероятностей для переменной x .

    Функция r(x ) содержит в себе всю информацию о том, как вероятность dW (x ) попадания x в интервал заданной длины dx зависит от местоположения этого интервала, т.е. она показывает, как вероятность распределена по x . Поэтому функцию r(x ) принято называть функцией распределения для переменной x и, тем самым, функцией распределения для той физической системы, ради описания спектра состояний которой была введена переменная x . Термины «плотность распределения вероятностей» и «функция распределения» в статистической физике используются как эквивалентные.

    Можно рассмотреть обобщение определения вероятности (6) и функции распределения (9) на случай, к примеру, трех переменных. Обобщение на случай произвольно большого числа переменных выполняется точно также.

    Пусть случайно меняющееся во времени состояние физической системы определяется значениями трех переменных x , y и z с непрерывным спектром:

    x О [a , b ]

    y О [c , d ]

    z О [e , f ] (10)

    где a , b ,…, f , как и ранее, не обязательно конечны. Переменные x , y и z могут быть, например, координатами центра масс молекулы газа, компонентами вектора ее скорости x Ю V x , y Ю V y и z Ю V z или импульса и т.д. Под событием понимается одновременное попадание всех трех переменных в интервалы длины Dx , Dy и Dz соответственно, т.е.:

    x О [x , x + Dx ]

    y О [y , y + Dy ]

    z О [z , z + Dz ] (11)

    Вероятность события (11) можно определить аналогично (6)

    с тем отличием, что теперь Dn – число измерений x , y и z , результаты которых одновременно удовлетворяют соотношениям (11). Использование разложения в ряд, аналогичного (7), дает

    dW (x , y , z ) = r(x , y , z dx dy dz (13)

    где r(x , y , z ) – функция распределения сразу для трех переменных x , y и z .

    В математической теории вероятностей термин «функция распределения» используется для обозначения величины отличающейся от r(x ), а именно: пусть x – некоторое значение случайной переменной x . Функция Ф(x), дающая вероятность того, что x примет значение не большее, чем x и называется функцией распределения. Функции r и Ф имеют разный смысл, но они связаны между собой. Использование теоремы сложения вероятностей дает (здесь а – левый конец интервала возможных значений x (см. ВЕРОЯТНОСТЕЙ ТЕОРИЯ): , (14) откуда

    Использование приближенного соотношения (8) дает DW (x , Dx ) » r(x )·Dx .

    Сравнение с точным выражением (15) показывает, что использование (8) эквивалентно замене интеграла, входящего в (16), произведением подынтегральной функции r(x ) на длину промежутка интегрирования Dx :

    Соотношение (17) будет точным, если r = const , следовательно, ошибка при замене (16) на (17) будет невелика, когда подынтегральная функция слабо меняется на длине промежутка интегрирования Dx .

    Можно ввести Dx эфф – длину интервала, на котором функция распределения r(x ) меняется существенно, т.е. на величину порядка самой функции, или величина Drэфф по модулю порядка r. Используя формулу Лагранжа, можно написать:

    откуда следует, что Dx эфф для любой функции r

    Функцию распределения можно считать «почти постоянной» на некотором промежутке изменения аргумента, если ее приращение |Dr| на этом промежутке по модулю много меньше самой функции в точках этого промежутка. Требование |Dr| эфф| ~ r (функция распределения r і 0) дает

    Dx x эфф (20)

    длина промежутка интегрирования должна быть мала по сравнению с той, на которой подынтегральная функция меняется существенно. Иллюстрацией служит рис. 1.

    Интеграл в левой части (17) равен площади под кривой. Произведение в правой части (17) – площадь заштрихованного на рис. 1 столбика. Критерием малости отличия соответствующих площадей является выполнение неравенства (20). В этом можно убедиться, подставляя в интеграл (17) первые члены разложения функции r(x ) в ряд по степеням

    Требование малости поправки (второго слагаемого в правой части (21) по сравнению с первым и дает неравенство (20) с Dx эфф из (19).

    Примеры ряда функций распределения, играющих важную роль в статистической физике.

    Распределение Максвелла для проекции вектора скорости молекулы на заданное направление (для примера, это направление оси OX ).

    Здесь m – масса молекулы газа, T – его температура, k – постоянная Больцмана.

    Распределение Максвелла для модуля вектора скорости :

    Распределение Максвелла для энергии поступательного движения молекул e = mV 2/2

    Распределение Больцмана , точнее, так называемая барометрическая формула, которая определяет распределение концентрации молекул или давления воздуха по высоте h от некоторого «нулевого уровня» в предположении, что температура воздуха от высоты не зависит (модель изотермической атмосферы). В действительности температура в нижних слоях атмосферы заметно падает с ростом высоты.