Меню
Бесплатно
Главная  /  Бизнес  /  Общие свойства металлов. Металлическая связь

Общие свойства металлов. Металлическая связь

Взаимодействие металлов с простыми окислителями. Отношение металлов к воде, водным растворам кислот, щелочей и солей. Роль оксидной пленки и продуктов окисления. Взаимодействие металлов с азотной и концентрированной серной кислотами.

К металлам относятся все s-, d-, f-элементы, а также р-элементы, располагающиеся в нижней части периодической системы от диагонали, проведенной от бора к астату. В простых веществах этих элементов реализуется металлическая связь. Атомы металлов имеют мало электронов на внешней электронной оболочке, в количестве 1, 2, или 3. Металлы проявляют электроположительные свойства и обладают низкой электроотрицательностью, меньшей двух.

Металлам присуще характерные признаки. Это твердые вещества, тяжелее воды, с металлическим блеском. Металлы обладают высокой теплопроводностью и электропроводностью. Для них характерно испускание электронов под действием различных внешних воздействий: облучения светом, при нагревании, при разрыве (экзоэлектронная эмиссия).

Главным признаком металлов является их способность отдавать электроны атомам и ионам других веществ. Металлы являются восстановителями в подавляющем большинстве случаев. И это их характерное химическое свойство. Рассмотрим отношение металлов к типичным окислителям, к которым относятся из простых веществ – неметаллы, вода, кислоты. В таблице 1 приведены сведения об отношении металлов к простым окислителям.

Таблица 1

Отношение металлов к простым окислителям

С фтором реагируют все металлы. Исключение составляют алюминий, железо, никель, медь, цинк в отсутствии влаги. Эти элементы при реакции с фтором в начальный момент образуют пленки фторидов, защищающие металлы от дальнейшего реагирования.

При тех же условиях и причинах, железо пассивируется в реакции с хлором. По отношению к кислороду уже не все, а только ряд металлов образует плотные защитные пленки оксидов. При переходе от фтора к азоту (таблица 1) окислительная активность уменьшается и поэтому все большее число металлов не окисляется. Например, с азотом реагирует только литий и щелочноземельные металлы.

Отношение металлов к воде и водным растворам окислителей.

В водных растворах восстановительная активность металла характеризуется значением его стандартного окислительно-восстановительного потенциала. Из всего ряда стандартных окислительно-восстановительных потенциалов выделяют ряд напряжений металлов, который указан в таблице 2.

Таблица 2

Ряд напряжение металлов

Окислитель Уравнение электродного процесса Стандартный электродный потенциал φ 0 , В Восстановитель Условная активность восстановителей
Li + Li + + e - = Li -3,045 Li Активный
Rb + Rb + + e - = Rb -2,925 Rb Активный
K + K + + e - = K -2,925 K Активный
Cs + Cs + + e - = Cs -2,923 Cs Активный
Ca 2+ Ca 2+ + 2e - = Ca -2,866 Ca Активный
Na + Na + + e - = Na -2,714 Na Активный
Mg 2+ Mg 2+ +2 e - = Mg -2,363 Mg Активный
Al 3+ Al 3+ + 3e - = Al -1,662 Al Активный
Ti 2+ Ti 2+ + 2e - = Ti -1,628 Ti Ср. активности
Mn 2+ Mn 2+ + 2e - = Mn -1,180 Mn Ср. активности
Cr 2+ Cr 2+ + 2e - = Cr -0,913 Cr Ср. активности
H 2 O 2H 2 O+ 2e - =H 2 +2OH - -0,826 H 2 , рН=14 Ср. активности
Zn 2+ Zn 2+ + 2e - = Zn -0,763 Zn Ср. активности
Cr 3+ Cr 3+ +3e - = Cr -0,744 Cr Ср. активности
Fe 2+ Fe 2+ + e - = Fe -0,440 Fe Ср. активности
H 2 O 2H 2 O + e - = H 2 +2OH - -0,413 H 2 , рН=7 Ср. активности
Cd 2+ Cd 2+ + 2e - = Cd -0,403 Cd Ср. активности
Co 2+ Co 2+ +2 e - = Co -0,227 Co Ср. активности
Ni 2+ Ni 2+ + 2e - = Ni -0,225 Ni Ср. активности
Sn 2+ Sn 2+ + 2e - = Sn -0,136 Sn Ср. активности
Pb 2+ Pb 2+ + 2e - = Pb -0,126 Pb Ср. активности
Fe 3+ Fe 3+ +3e - = Fe -0,036 Fe Ср. активности
H + 2H + + 2e - =H 2 H 2 , рН=0 Ср. активности
Bi 3+ Bi 3+ + 3e - = Bi 0,215 Bi Малой активн.
Cu 2+ Cu 2+ + 2e - = Cu 0,337 Cu Малой активн.
Cu + Cu + + e - = Cu 0,521 Cu Малой активн.
Hg 2 2+ Hg 2 2+ + 2e - = Hg 0,788 Hg 2 Малой активн.
Ag + Ag + + e - = Ag 0,799 Ag Малой активн.
Hg 2+ Hg 2+ +2e - = Hg 0,854 Hg Малой активн.
Pt 2+ Pt 2+ + 2e - = Pt 1,2 Pt Малой активн.
Au 3+ Au 3+ + 3e - = Au 1,498 Au Малой активн.
Au + Au + + e - = Au 1,691 Au Малой активн.

В данном ряду напряжений приведены также значения электродных потенциалов водородного электрода в кислой (рН=0), нейтральной (рН=7), щелочной (рН=14) средах. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы – восстановителями. Чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы. Чем ближе металл к началу ряда, тем более сильным восстановителем он является.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Следует иметь в виду, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей происходит лишь в случае металлов, расположенных в ряду напряжений после магния.

Все металлы разделяют на три условные группы, что отражено в следующей таблице.

Таблица 3

Условное деление металлов

Взаимодействие с водой. Окислителем в воде является ион водорода. Поэтому окисляться водой могут только те металлы, стандартные электродные потенциалы которых ниже потенциала ионов водорода в воде. Он зависит от рН среды и равен

φ = -0,059рН.

В нейтральной среде (рН=7) φ = -0,41 В. Характер взаимодействия металлов с водой представлен в таблице 4.

Металлы из начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Но уже магний вытесняет водород только из горячей воды. Обычно металлы, расположенные между магнием и свинцом не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, которые обладают защитным действием.

Таблица 4

Взаимодействие металлов с водой в нейтральной среде

Взаимодействие металлов с хлорводородной кислотой.

Окислителем в соляной кислоте является ион водорода. Стандартный электродный потенциал водородного иона равен нулю. Поэтому все активные металлы и металлы средней активности должны реагировать с кислотой. Только для свинца проявляется пассивация.

Таблица 5

Взаимодействие металлов с соляной кислотой

Медь может быть растворена в очень концентрированной соляной кислоте, не смотря на то, что относится к малоактивным металлам.

Взаимодействие металлов с серной кислотой происходит различно и зависит от её концентрации.

Взаимодействие металлов с разбавленной серной кислотой. Взаимодействие с разбавленной серной кислотой осуществляется так же, как и с соляной кислотой.

Таблица 6

Взаимодействие металлов с разбавленной серной кислотой

Разбавленная серная кислота окисляет своим ионом водорода. Она взаимодействует с теми металлами, электродные потенциалы которых ниже, чем у водорода. Свинец не растворяется в серной кислоте при её концентрации ниже 80%, так как образующаяся при взаимодействии свинца с серной кислотой соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Взаимодействие металлов с концентрированной серной кислотой.

В концентрированной серной кислоте в роли окислителя выступает сера в степени окисления +6. Она входит в состав сульфат-иона SO 4 2- . Поэтому концентрированной кислотой окисляются все металлы, стандартный электродный потенциал которых меньше, чем у окислителя. Наибольшее значение электродного потенциала в электродных процессах с участием сульфат-иона в качестве окислителя равно 0,36 В. Вследствие этого с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.

Для металлов средней активности (Al, Fe) имеет место пассивация из-за образования плотных пленок оксидов. Олово окисляется до четырехвалентного состояния с образованием сульфата олова (IV):

Sn + 4 H 2 SO 4 (конц.) = Sn(SO 4) 2 +2SO 2 + 2H 2 O.

Таблица 7

Взаимодействие металлов с концентрированной серной кислотой

Свинец окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца. В горячей концентрированной серной кислоте растворяется ртуть с образованием сульфатов ртути (I) и ртути (II). В кипящей концентрированной серной кислоте растворяется даже серебро.

Следует иметь в виду, что чем активнее металл, тем глубже степень восстановления серной кислоты. С активными металлами кислота восстанавливается в основном до сероводорода, хотя присутствуют и другие продукты. Например

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ +4H 2 O;

4Zn +5H 2 SO 4 = 4ZnSO 4 = 4ZnSO 4 +H 2 S +4H 2 O.

Взаимодействие металлов с разбавленной азотной кислотой.

В азотной кислоте в качестве окислителя выступает азот в степени окисления +5. Максимальное значение электродного потенциала для нитрат-иона разбавленной кислоты как окислителя равно 0,96 В. Вследствие такого большого значения, азотная кислота более сильный окислитель, чем серная. Это видно из того, что азотная кислота окисляет серебро. Восстанавливается кислота тем глубже, чем активнее металл и чем более разбавлена кислота.

Таблица 8

Взаимодействие металлов с разбавленной азотной кислотой

Взаимодействие металлов с концентрированной азотной кислотой.

Концентрированная азотная кислота обычно восстанавливается до диоксида азота. Взаимодействие концентрированной азотной кислоты с металлами представлено в таблице 9.

При использовании кислоты в недостатке и без перемешивания активные металлы восстанавливают её до азота, а металлы среднеё активности до монооксида углерода.

Таблица 9

Взаимодействие концентрированной азотной кислоты с металлами

Взаимодействие металлов с растворами щелочей.

Щелочами металлы окисляться не могут. Это обусловлено тем, что щелочные металлы являются сильными восстановителями. Поэтому их ионы самые слабые окислители и в водных растворах окислительных свойств не проявляют. Однако в присутствии щелочей окисляющее действие воды проявляется в большей степени, чем в их отсутствие. Благодаря этому, в щелочных растворах металлы окисляются водой с образование гидроксидов и водорода. Если оксид и гидроксид относятся к амфотерным соединениям, то они будут растворяться в щелочном растворе. В результате пассивные в чистой воде металлы энергично взаимодействуют с растворами щелочей.

Таблица 10

Взаимодействие металлов с растворами щелочей

Процесс растворения представляется в виде двух стадий: окисления металла водой и растворения гидроксида:

Zn + 2HOH = Zn(OH) 2 ↓ + H 2 ;

Zn(OH) 2 ↓ + 2NaOH = Na 2 .

Различают технологические, физические, механические и химические свойства металлов. К физическим относят цвет, электропроводность. К характеристикам этой группы относятся также теплопроводность, плавкость и плотность металла.

К механическим характеристикам относят пластичность, упругость, твердость, прочность, вязкость.

Химические свойства металлов включают в себя коррозийную стойкость, растворимость и окисляемость.

Такие характеристики, как «жидкотекучесть», прокаливаемость, свариваемость, ковкость, являются технологическими.

Физические свойства

  1. Цвет. Металлы не пропускают свет сквозь себя, то есть непрозрачны. В отраженном свете каждый элемент обладает своим собственным оттенком - цветом. Среди технических металлов окраску имеет только медь и сплавы с ней. Для остальных элементов характерным является оттенок от серебристо-белого до серо-стального.
  2. Плавкость. Эта характеристика указывает на способность элемента под воздействием температуры переходить в жидкое состояние из твердого. Плавкость считается важнейшим свойством металлов. В процессе нагревания все металлы из твердого состояния переходят в жидкое. При охлаждении же расплавленного вещества происходит обратный переход - из жидкого в твердое состояние.
  3. Электропроводность. Данная характеристика свидетельствует о способности переноса свободными электронами электричества. Электропроводность металлических тел в тысячи раз больше, чем неметаллических. При увеличении температуры показатель проводимости электричества снижается, а при уменьшении температуры, соответственно, повышается. Необходимо отметить, что электропроводность сплавов будет всегда ниже, нежели какого-либо металла, составляющего сплав.
  4. Магнитные свойства. К явно магнитным (ферромагнитным) элементам относят только кобальт, никель, железо, а также ряд их сплавов. Однако в процессе нагревания до определенной температуры указанные вещества теряют магнитность. Отдельные сплавы железа при комнатной температуре не относятся к ферромагнитным.
  5. Теплопроводность. Эта характеристика указывает на способность перехода тепла к менее нагретому от более нагретого тела без видимого перемещения составляющих его частиц. Высокий уровень теплопроводности позволяет равномерно и быстро нагревать и охлаждать металлы. Среди технических элементов наибольшим показателем обладает медь.

Металлы в химии занимают отдельное место. Наличие соответствующих характеристик позволяет применять то или иное вещество в определенной области.

Химические свойства металлов

  1. Коррозийная стойкость. Коррозией называют разрушение вещества в результате электрохимического или химического взаимоотношения с окружающей средой. Самым распространенным примером считается ржавление железа. Коррозийная стойкость относится к важнейшим природным характеристикам ряда металлов. В связи с этим такие вещества, как серебро, золото, платина получили название благородных. Обладает высокой коррозийной сопротивляемостью никель и прочие цветные подвержены разрушению быстрее и сильнее, нежели цветные.
  2. Окисляемость. Эта характеристика указывает на способность элемента вступать в реакцию с О2 под влиянием окислителей.
  3. Растворимость. Металлы, обладающие в жидком состоянии неограниченной растворимостью, при затвердении могут формировать твердые растворы. В этих растворах атомы от одного компонента встраиваются в другого составляющего только в определенных пределах.

Необходимо отметить, что физические и химические свойства металлов являются одними из основных характеристик этих элементов.

По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

Металлы (от лат. metallum - шахта, рудник) - группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

  • 6 элементов в группе щелочных металлов,
  • 6 в группе щёлочноземельных металлов,
  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды + лантан,
  • 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
  • вне определённых групп бериллий и магний.

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия

Характерные свойства металлов

  1. Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  2. Хорошая электропроводность
  3. Возможность лёгкой механической обработки
  4. Высокая плотность (обычно металлы тяжелее неметаллов)
  5. Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  6. Большая теплопроводность
  7. В реакциях чаще всего являются восстановителями.

Физические свойства металлов

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

В зависимости от плотности , металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия - двух самых тяжёлых металлов - почти равны (около 22.6 г/см³ - ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны , то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Цвет у большинства металлов примерно одинаковый - светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Химические свойства металлов

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

оксид лития

пероксид натрия

надпероксид калия

Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Со средними и малоактивными металлами реакция происходит при нагревании:

  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:

При нагревании:

  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды - метан.

Данный урок посвящен изучению темы «Общие свойства металлов. Металлическая связь». В ходе урока будут рассмотрены общие химические свойства металлов, особенности металлической химической связи. Учитель объяснит сходство химических и физических свойств металлов, используя модель их внутреннего строения.

Тема: Химия металлов

Урок: Общие свойства металлов. Металлическая связь

Для металлов характерны общие физические свойства: они обладают особенным металлическим блеском, высокой тепло- и электропроводностью, пластичностью.

Для металлов также характерны некоторые общие химические свойства. Важно запомнить, что в химических реакциях металлы выступают в качестве восстановителей: отдают электроны и повышают свою степень окисления. Рассмотрим некоторые реакции, в которых участвуют металлы.

ВЗАИМОДЕЙСТВИЕ С КИСЛОРОДОМ

Многие металлы могут вступать в реакцию с кислородом. Обычно продуктами этих реакций являются оксиды, но есть и исключения, о которых вы узнаете на следующем уроке. Рассмотрим взаимодействие магния с кислородом.

Магний горит в кислороде, при этом образуется оксид магния:

2Mg + O 2 = 2MgO

Рис. 1. Горение магния в кислороде

Атомы магния отдают свои внешние электроны атомам кислорода: два атома магния отдают по два электрона двум атомам кислорода. При этом магний выступает в роли восстановителя, а кислород - в роли окислителя.

Для металлов характерна реакция с галогенами. Продуктом такой реакции является галогенид металла, например, хлорид.

Рис. 2. Горение калия в хлоре

Калий сгорает в хлоре образованием хлорида калия:

2К + Cl 2 = 2KCl

Два атома калия отдают молекуле хлора по одному электрону. Калий, повышая степень окисления, играет роль восстановителя, а хлор, понижая степень окисления,- роль окислителя

Многие металлы реагируют с серой с образованием сульфидов. В этих реакциях металлы также выступают в роли восстановителей, тогда как сера будет окислителем. Сера в сульфидах находится в степени окисления -2, т.е. она понижает свою степень окисления с 0 до -2. Например, железо при нагревании реагирует с серой с образованием сульфида железа (II):

Рис. 3. Взаимодействие железа с серой

Металлы также могут реагировать с водородом, азотом и другими неметаллами при определенных условиях.

С водой без нагревания реагируют только активные металлы, например, щелочные и щелочноземельные. В ходе этих реакций образуется щелочь и выделяется газообразный водород. Например, кальций реагирует с водой с образованием гидроксида кальция и водорода, при этом выделяется большое количество теплоты:

Ca + 2H 2 O = Ca(OH) 2 + H 2

Менее активные металлы, например, железо и цинк, реагируют с водой только при нагревании с образованием оксида металла и водорода. Например:

Zn + H 2 O = ZnO + H 2

В этих реакциях окислителем является атом водорода, входящий в состав воды.

Металлы, стоящие в ряду напряжении правее водорода, с водой не реагируют.

Вы уже знаете, что с кислотами реагируют металлы, стоящие в ряду напряжений левее водорода. В этих реакциях металлы отдают электроны и выступают в качестве восстановителя. Окислителем являются катионы водорода, образующиеся в растворах кислот. Например, цинк реагирует с соляной кислотой:

Zn + 2HCl = ZnCl 2 + H 2

Иначе протекают реакции металлов с азотной и концентрированной серной кислотами. В этих реакциях водород практически не выделяется. Мы погорим о таких взаимодействиях на следующих уроках.

Металл может реагировать с раствором соли, если он активнее, чем металл, входящий в состав соли. Например, железо замещает медь из сульфата меди (II):

Fe + CuSO 4 = FeSO 4 + Cu

Железо - восстановитель, катионы меди - окислитель.

Попробуем объяснить, почему металлы обладают общими физическими и химическими свойствами. Для этого рассмотрим модель внутреннего строения металла.

Атомы металлов имеют относительно большие радиусы и малое число внешних электронов. Эти электроны слабо притягиваются к ядру, поэтому в химических реакциях металлы выступают в роли восстановителей, отдавая электроны с внешнего энергетического уровня.

В узлах кристаллической решетки металлов находятся не только нейтральные атомы, но и катионы металла, т.к. внешние электроны свободно перемещаются по кристаллической решетке. При этом атомы, отдавая электроны, становятся катионами, а катионы, принимая электроны, превращаются в электронейтральные атомы.

Рис. 4. Модель внутреннего строения металла

Химическую связь, которая образуется в результате притяжения катионов металла к свободно перемещающимся электронам, называют металлической .

Электро- и теплопроводность металлов объясняются наличием свободных электронов, которые могут быть носителями электрического тока и переносчиками теплоты. Пластичность металла объясняется тем, что при механическом воздействии не рвется химическая связь, т.к. химическая связь устанавливается не между конкретными атомами и катионами, а между всеми катионами металла со всеми свободными электронами в кристалле металла.

1. Микитюк А.Д. Сборник задач и упражнений по химии. 8-11 классы / А.Д. Микитюк. - М.: Изд. «Экзамен», 2009.

2. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§23)

3. Оржековский П.А. Химия: 9-ый класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§6)

4. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009.

5. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008.

6. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

с.41 №№ А1, А2 из Учебника Оржековского П.А. «Химия: 9-ый класс» (М.: Астрель, 2013).