Menu
For free
Registration
Home  /  Relationship/ How to solve the 4x 2 equation. How is a system of equations solved? Methods for solving systems of equations

How to solve the 4x 2 equation. How is a system of equations solved? Methods for solving systems of equations

In the 7th grade mathematics course, we encounter for the first time equations with two variables, but they are studied only in the context of systems of equations with two unknowns. That is why a whole series of problems in which certain conditions are introduced on the coefficients of the equation that limit them fall out of sight. In addition, methods for solving problems like “Solve an equation in natural or integer numbers” are also ignored, although in Unified State Exam materials and on entrance exams Problems of this kind are becoming more and more common.

Which equation will be called an equation with two variables?

So, for example, the equations 5x + 2y = 10, x 2 + y 2 = 20, or xy = 12 are equations in two variables.

Consider the equation 2x – y = 1. It becomes true when x = 2 and y = 3, so this pair of variable values ​​is a solution to the equation in question.

Thus, the solution to any equation with two variables is a set of ordered pairs (x; y), values ​​of the variables that turn this equation into a true numerical equality.

An equation with two unknowns can:

A) have one solution. For example, the equation x 2 + 5y 2 = 0 has a unique solution (0; 0);

b) have multiple solutions. For example, (5 -|x|) 2 + (|y| – 2) 2 = 0 has 4 solutions: (5; 2), (-5; 2), (5; -2), (-5; - 2);

V) have no solutions. For example, the equation x 2 + y 2 + 1 = 0 has no solutions;

G) have infinitely many solutions. For example, x + y = 3. The solutions to this equation will be numbers whose sum is equal to 3. The set of solutions to this equation can be written in the form (k; 3 – k), where k is any real number.

The main methods for solving equations with two variables are methods based on factoring expressions, isolating a complete square, and using the properties quadratic equation, limitations of expressions, evaluation methods. The equation is usually converted to a form from which a system for finding the unknowns can be obtained.

Factorization

Example 1.

Solve the equation: xy – 2 = 2x – y.

Solution.

We group the terms for the purpose of factorization:

(xy + y) – (2x + 2) = 0. From each bracket we take out a common factor:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. We have:

y = 2, x – any real number or x = -1, y – any real number.

Thus, the answer is all pairs of the form (x; 2), x € R and (-1; y), y € R.

Equality of non-negative numbers to zero

Example 2.

Solve the equation: 9x 2 + 4y 2 + 13 = 12(x + y).

Solution.

Grouping:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Now each bracket can be folded using the squared difference formula.

(3x – 2) 2 + (2y – 3) 2 = 0.

The sum of two non-negative expressions is zero only if 3x – 2 = 0 and 2y – 3 = 0.

This means x = 2/3 and y = 3/2.

Answer: (2/3; 3/2).

Estimation method

Example 3.

Solve the equation: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Solution.

In each bracket we select a complete square:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Let’s estimate the meaning of the expressions in parentheses.

(x + 1) 2 + 1 ≥ 1 and (y – 2) 2 + 2 ≥ 2, then the left side of the equation is always at least 2. Equality is possible if:

(x + 1) 2 + 1 = 1 and (y – 2) 2 + 2 = 2, which means x = -1, y = 2.

Answer: (-1; 2).

Let's get acquainted with another method for solving equations with two variables of the second degree. This method consists of treating the equation as square with respect to some variable.

Example 4.

Solve the equation: x 2 – 6x + y – 4√y + 13 = 0.

Solution.

Let's solve the equation as a quadratic equation for x. Let's find the discriminant:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . The equation will have a solution only when D = 0, that is, if y = 4. We substitute the value of y into the original equation and find that x = 3.

Answer: (3; 4).

Often in equations with two unknowns they indicate restrictions on variables.

Example 5.

Solve the equation in whole numbers: x 2 + 5y 2 = 20x + 2.

Solution.

Let's rewrite the equation in the form x 2 = -5y 2 + 20x + 2. The right side of the resulting equation when divided by 5 gives a remainder of 2. Therefore, x 2 is not divisible by 5. But the square of a number not divisible by 5 gives a remainder of 1 or 4. Thus, equality is impossible and there are no solutions.

Answer: no roots.

Example 6.

Solve the equation: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Solution.

Let's highlight the complete squares in each bracket:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. The left side of the equation is always greater than or equal to 3. Equality is possible provided |x| – 2 = 0 and y + 3 = 0. Thus, x = ± 2, y = -3.

Answer: (2; -3) and (-2; -3).

Example 7.

For every pair of negative integers (x;y) satisfying the equation
x 2 – 2xy + 2y 2 + 4y = 33, calculate the sum (x + y). Please indicate the smallest amount in your answer.

Solution.

Let's select complete squares:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Since x and y are integers, their squares are also integers. We get the sum of the squares of two integers equal to 37 if we add 1 + 36. Therefore:

(x – y) 2 = 36 and (y + 2) 2 = 1

(x – y) 2 = 1 and (y + 2) 2 = 36.

Solving these systems and taking into account that x and y are negative, we find solutions: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Answer: -17.

Don't despair if you have difficulty solving equations with two unknowns. With a little practice, you can handle any equation.

Still have questions? Don't know how to solve equations in two variables?
To get help from a tutor, register.
The first lesson is free!

website, when copying material in full or in part, a link to the source is required.

An equation with one unknown, which, after opening the brackets and bringing similar terms, takes the form

ax + b = 0, where a and b are arbitrary numbers, is called linear equation with one unknown. Today we’ll figure out how to solve these linear equations.

For example, all equations:

2x + 3= 7 – 0.5x; 0.3x = 0; x/2 + 3 = 1/2 (x – 2) - linear.

The value of the unknown that turns the equation into a true equality is called decision or root of the equation .

For example, if in the equation 3x + 7 = 13 instead of the unknown x we ​​substitute the number 2, we obtain the correct equality 3 2 +7 = 13. This means that the value x = 2 is the solution or root of the equation.

And the value x = 3 does not turn the equation 3x + 7 = 13 into a true equality, since 3 2 +7 ≠ 13. This means that the value x = 3 is not a solution or a root of the equation.

Solution of any linear equations reduces to solving equations of the form

ax + b = 0.

Let's move the free term from the left side of the equation to the right, changing the sign in front of b to the opposite, we get

If a ≠ 0, then x = ‒ b/a .

Example 1. Solve the equation 3x + 2 =11.

Let's move 2 from the left side of the equation to the right, changing the sign in front of 2 to the opposite, we get
3x = 11 – 2.

Let's do the subtraction, then
3x = 9.

To find x, you need to divide the product by a known factor, that is
x = 9:3.

This means that the value x = 3 is the solution or root of the equation.

Answer: x = 3.

If a = 0 and b = 0, then we get the equation 0x = 0. This equation has infinitely many solutions, since when we multiply any number by 0 we get 0, but b is also equal to 0. The solution to this equation is any number.

Example 2. Solve the equation 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1.

Let's expand the brackets:
5x – 15 + 2 = 3x – 12 + 2x ‒ 1.


5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.

Here are some similar terms:
0x = 0.

Answer: x - any number.

If a = 0 and b ≠ 0, then we get the equation 0x = - b. This equation has no solutions, since when we multiply any number by 0 we get 0, but b ≠ 0.

Example 3. Solve the equation x + 8 = x + 5.

Let’s group terms containing unknowns on the left side, and free terms on the right side:
x – x = 5 – 8.

Here are some similar terms:
0х = ‒ 3.

Answer: no solutions.

On Figure 1 shows a diagram for solving a linear equation

Let's draw up a general scheme for solving equations with one variable. Let's consider the solution to Example 4.

Example 4. Suppose we need to solve the equation

1) Multiply all terms of the equation by the least common multiple of the denominators, equal to 12.

2) After reduction we get
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) To separate terms containing unknown and free terms, open the brackets:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Let us group in one part the terms containing unknowns, and in the other - free terms:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Let us present similar terms:
- 22x = - 154.

6) Divide by – 22, We get
x = 7.

As you can see, the root of the equation is seven.

Generally such equations can be solved using the following scheme:

a) bring the equation to its integer form;

b) open the brackets;

c) group the terms containing the unknown in one part of the equation, and the free terms in the other;

d) bring similar members;

e) solve an equation of the form aх = b, which was obtained after bringing similar terms.

However, this scheme is not necessary for every equation. When solving many more simple equations you have to start not from the first, but from the second ( Example. 2), third ( Example. 1, 3) and even from the fifth stage, as in example 5.

Example 5. Solve the equation 2x = 1/4.

Find the unknown x = 1/4: 2,
x = 1/8
.

Let's look at solving some linear equations found in the main state exam.

Example 6. Solve the equation 2 (x + 3) = 5 – 6x.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Answer: - 0.125

Example 7. Solve the equation – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Answer: 2.3

Example 8. Solve the equation

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Example 9. Find f(6) if f (x + 2) = 3 7's

Solution

Since we need to find f(6), and we know f (x + 2),
then x + 2 = 6.

We solve the linear equation x + 2 = 6,
we get x = 6 – 2, x = 4.

If x = 4 then
f(6) = 3 7-4 = 3 3 = 27

Answer: 27.

If you still have questions or want to understand solving equations more thoroughly, sign up for my lessons in the SCHEDULE. I will be glad to help you!

TutorOnline also recommends watching a new video lesson from our tutor Olga Alexandrovna, which will help you understand both linear equations and others.

website, when copying material in full or in part, a link to the source is required.


Let's look at two types of solutions to systems of equations:

1. Solving the system using the substitution method.
2. Solving the system by term-by-term addition (subtraction) of the system equations.

In order to solve the system of equations by substitution method you need to follow a simple algorithm:
1. Express. From any equation we express one variable.
2. Substitute. We substitute the resulting value into another equation instead of the expressed variable.
3. Solve the resulting equation with one variable. We find a solution to the system.

To decide system by term-by-term addition (subtraction) method need to:
1. Select a variable for which we will make identical coefficients.
2. We add or subtract equations, resulting in an equation with one variable.
3. Solve the resulting linear equation. We find a solution to the system.

The solution to the system is the intersection points of the function graphs.

Let us consider in detail the solution of systems using examples.

Example #1:

Let's solve by substitution method

Solving a system of equations using the substitution method

2x+5y=1 (1 equation)
x-10y=3 (2nd equation)

1. Express
It can be seen that in the second equation there is a variable x with a coefficient of 1, which means that it is easiest to express the variable x from the second equation.
x=3+10y

2.After we have expressed it, we substitute 3+10y into the first equation instead of the variable x.
2(3+10y)+5y=1

3. Solve the resulting equation with one variable.
2(3+10y)+5y=1 (open the brackets)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0.2

The solution to the equation system is the intersection points of the graphs, therefore we need to find x and y, because the intersection point consists of x and y. Let's find x, in the first point where we expressed it we substitute y.
x=3+10y
x=3+10*(-0.2)=1

It is customary to write points in the first place we write the variable x, and in the second place the variable y.
Answer: (1; -0.2)

Example #2:

Let's solve using the term-by-term addition (subtraction) method.

Solving a system of equations using the addition method

3x-2y=1 (1 equation)
2x-3y=-10 (2nd equation)

1. We choose a variable, let’s say we choose x. In the first equation, the variable x has a coefficient of 3, in the second - 2. We need to make the coefficients the same, for this we have the right to multiply the equations or divide by any number. We multiply the first equation by 2, and the second by 3 and get a total coefficient of 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2. Subtract the second from the first equation to get rid of the variable x. Solve the linear equation.
__6x-4y=2

5y=32 | :5
y=6.4

3. Find x. We substitute the found y into any of the equations, let’s say into the first equation.
3x-2y=1
3x-2*6.4=1
3x-12.8=1
3x=1+12.8
3x=13.8 |:3
x=4.6

The intersection point will be x=4.6; y=6.4
Answer: (4.6; 6.4)

Do you want to prepare for exams for free? Tutor online for free. No joke.