Меню
Бесплатно
Главная  /  Истории успеха  /  Cl распределение электронов. Распределение электронов в атомах

Cl распределение электронов. Распределение электронов в атомах

Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, т.к. для фермионов волновая функция должна быть антисимметричной. Обобщая опытные данные, В. Паули сформировал принцип исключения , согласно которому системы фермионов встречаются в природе только в состояниях , описываемых антисимметричными волновыми функциями (квантово-механическая формулировка принципа Паули).

Из этого положения вытекает более простая формулировка принципа Паули, которая и была введена им в квантовую теорию (1925 г.) еще до построения квантовой механики: в системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоянии . Отметим, что число одинаковых бозонов, находящихся в одном и том же состоянии, не лимитируется.

Напомним, что состояние электрона в атоме однозначно определяется набором четырех квантовых чисел :

· главного n ;

· орбитального l , обычно эти состояния обозначают 1s , 2d , 3f ;

· магнитного ();

· магнитного спинового ().

Распределение электронов в атоме происходит по принципу Паули, который может быть сформулирован для атома в простейшем виде: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел: n , l , , :

Z (n , l , , ) = 0 или 1,

где Z (n , l , , ) - число электронов, находящихся в квантовом состоянии, описываемых набором четырех квантовых чисел: n , l , , . Таким образом, принцип Паули утверждает, что два электрона , связанные в одном и том же атоме различаются значениями , по крайней мере , одного квантового числа .

Максимальное число электронов, находящихся в состояниях, описываемых набором трех квантовых чисел n , l и m , и отличающихся только ориентацией спинов электронов равно:

, (8.2.1)

ибо спиновое квантовое число может принимать лишь два значения 1/2 и –1/2.

Максимальное число электронов, находящихся в состояниях, определяемых двумя квантовыми числами n и l :

. (8.2.2)

При этом вектор орбитального момента импульса электрона может принимать в пространстве (2l + 1) различных ориентаций (рис. 8.1).

Максимальное число электронов, находящихся в состояниях, определяемых значением главного квантового числа n , равно:

. (8.2.3)

Совокупность электронов в многоэлектронном атоме , имеющих одно и то же главное квантовое число n , называется электронной оболочкой или слоем .

В каждой из оболочек электроны распределяются по подоболочкам , соответствующим данному l .

Область пространства , в которой высока вероятность обнаружить электрон , называют подоболочкой или орбиталью . Вид основных типов орбиталей показан на рис. 8.1.

Поскольку орбитальное квантовое число принимает значения от 0 до , число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l + 1). Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам приведено в табл. 1.

Таблица 1

Главное квантовое число n

Символ оболочки

Максимальное число электроновв оболочке

Орбитальное квантовое число l

Символ подоболочки

Максимальное число

электронов в

подоболочке

Распределение характеризуется следующими правилами:

    принципом Паули;

    правилом Гунда;

    принципом наименьшей энергии и правилом Клечковского.

По принципу Паули в атоме не может быть двух и более электронов с одинаковым значением всех четырех квантовых чисел. Основываясь на принципе Паули можно установить максимальную емкость каждого энергетического уровня и подуровня.

Подуровень, ℓ

Обозначение подуровня

Магнитное квантовое число, m

Спиновое квантовое число,s

3, -2, -1, 0, 1, 2, 3

Таким образом, максимальное количество электронов на:

s -подуровне – 2,

p - подуровне – 6,

d -подуровне ­­– 10,

f -подуровне – 14.

В пределах квантового уровня n электрон может принимать значения 2n 2 различных состояний, что было установлено опытным путем с помощью спектрального анализа.

Правило Гунда : в каждом подуровне электроны стремятся занять максимальное число свободных энергетических ячеек, чтобы суммарный спин имел наибольшее значение.

Например:

правильно неправильно неправильно

3р 3:

s = +1/2+1/2+1/2=1,5 s =-1/2+1/2+1/2=0,5 s = -1/2+1/2-1/2=-0,5

Принцип наименьшей энергии и правило Клечковского: электроны в первую очередь заселяют квантовые орбитали с минимальной энергией. Так как запас энергии в атоме определяется значением суммы главного и орбитального квантовых чисел (n + ℓ), то сначала электроны заселяют орбитали, для которых сумма (n + ℓ) наименьшая.

Например: сумма (n + ℓ) для 3d - подуровня равна n = 3, l = 2, следовательно, (n + ℓ) = 5;для 4s-подуровня: n = 4, ℓ = 0, следовательно, (n + ℓ) = 4. В этом случае в первую очередь заполняется 4s-подуровень и только потом 3d-подуровень.

Если суммарные значения энергии равны, то заселяется тот уровень, который находится ближе к ядру.

Например: для 3d: n = 3, ℓ = 2, (n + ℓ) = 5;

для 4p: n = 4, ℓ = 1, (n + ℓ) = 5.

Так как n = 3 < n = 4, 3d заселится электронами раньше, чем 4 p.

Таким образом, последовательность заполнения уровней и подуровней электронами в атомах:

1 s 2 <2 s 2 <2 p 6 <3 s 2 <3 p 6 <4 s 2 <3 d 10 <4 p 6 <5 s 2 <4 d 10 <5 p 6 <6 s 2 <5 d 10 4 f 14 <6 p 6 <7s 2 …..

Электронные формулы

Электронная формула - это графическое изображение распределения электронов по уровням и подуровням в атоме. Существует два вида формул:

    при написании используются только два квантовых числа: n и ℓ. Главное квантовое число указывается цифрой перед буквенным обозначением подуровня. Орбитальное квантовое число указывается буквой s, p, d или f. Количество электронов указывается цифрой как показатель степени.

Например: +1 H: 1s 1 ; +4 Be: 1s 2 2s 2 ;

2 He: 1s 2 ; +10 Ne: 1s 2 2s 2 2p 6 ;

3 Li: 1s 2 2s 1 ; +14 Si: 1s 2 2s 2 2p 6 3s 2 3p 6 .

То есть соблюдается последовательность

1 s 2 <2 s 2 <2 p 6 <3 s 2 <3 p 6 <4 s 2 <3 d 10 <4 p 6 <5 s 2 <4 d 10 <5 p 6 <6 s 2 <5 d 10 4 f 14 <6 p 6 <7s 2 …..

    графическая электронная формула - используются все 4 квантовых числа - это распределение электронов по квантовым ячейкам. Главное квантовое число изображается слева, орбитальное – внизу буквой, магнитное – количество клеток, спиновое – направление стрелок.

Например:

8 O:…2s 2 2p 4

Графическая формула используется для записи только валентных электронов.

Рассмотрим составление электронных формул элементов по периодам.

I период содержит 2 элемента, у которых полностью заселен электронами I квантовый уровень и s-подуровень (максимальное количество электронов на подуровне - 2):

2 He: n=1 1s 2

Элементы, у которых последним заполняется s-подуровень, относят к s -семейству и называют s -элементами .

У элементов II периода идет заполнение II квантового уровня, s- и p-подуровня (максимальное количество электронов на р-подуровне - 8).

3 Li: 1s 2 2s 1 ; 4 Be: 1s 2 2s 2 ;

5 B: 1s 2 2s 2 2p 1 ; 10 Ne: 1s 2 2s 2 2p 6

Элементы, у которых последним заполняется р-подуровень, относят к р-семейству и называют р-элементами .

У элементов III периода начинается формирование III квантового уровня. У Na и Mg идет заселение электронами 3s-подуровня. У элементов от 13 Al до 18 Ar заселяется 3p-подуровень; 3d-подуровень остается незаполненным, так как обладает более высоким уровнем энергии, чем 4s-подуровень и не заполняется у элементов III периода.

3d-подуровень начинает заполняться у элементов IV периода, а 4d - у элементов V периода (в соответствии с последовательностью):

19 K: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 ; 20 Ca: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ;

21 Sс: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ; 25 Mn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 ;

33 As: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3 ; 43 Tc: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 5

Элементы, у которых последним заполняется d-подуровень, относят к d -семейству и называют d -элементами .

4f заполняется только после 57 элемента VI периода:

57 La: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 ;

58 Сe: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 4f 1 ;

Заселение электронами V квантового уровня идет аналогично IV периоду. Таким образом, соблюдается показанная ранее последовательность заселения электронами уровней и подуровней:

6s 2 5d 10 4f 14 6p 6

    заселение электронами нового квантового уровня всегда начинается с s-подуровня. У элементов данного периода заселяются электронами только s и p подуровни внешнего квантового уровня;

    заселение d-подуровня запаздывает на I период; 3d-подуровень заполняется у элементов IV периода, 4d – подуровень у элементов V периода и т.д.;

    заселение электронами f подуровня запаздывает на 2 периода; 4f-подуровень заселяется у элементов VI периода, 5f – подуровень у элементов VII периода и т.д.

Электроны распределяются по подуровням, образуя вокруг ядра облака определенной формы, это распределение зависит от количества их энергий, то есть чем ближе электрон к ядру атома, тем меньше его количество энергии.

Электроны стремятся занять положение, соответствующее минимальному значению энергии, и располагаются вокруг ядра согласно принципу Паули. Как известно из предыдущих тем, наибольшее число электронов, которые могут расположиться в каждом электронном слое, определяется по формуле N = 2n 2 . Первый электронный слой или слой К находится на самом близком расстоянии от ядра атома и имеет n=1. В соответствии с этим на этом слое совершают движение N=2-1 2 =2 электрона. На втором электронном слое могут разместиться 8, на третьем - 18, а на четвертом - 32 электрона.

Во внешних электронных слоях всех элементов (кроме элементов 1 периода) находится не более восьми электронов. Внешние электронные слои инертных газов (за исключением гелия) заполнены восемью электронами, поэтому эти газы химически устойчивы.

На внешнем энергетическом уровне элементов основной подгруппы периодической таблицы число электронов равно номеру группы. Число электронов во внешнем слое элементов побочной подгруппы не превышает двух, при переходе от одного элемента ко второму притягиваемые электроны переходят из внешнего слоя во внутренний, так как внешний пополняется ns 2 ·nр 6 электронами, а присоединяющиеся электроны занимают подуровень nd.

Так, атом марганца имеет следующее строение: Мn(+25) 2, 8, 13, 2, а его электронная формула: 1s 2 · 2s 2 · 2p 6 · 3s 2 · 3p 6 · 3d 5 · 4s 2 .

Согласно принципу Паули, в любом атоме не может быть двух электронов с одинаковыми квантовыми числами.

Следовательно, на каждой орбитали атома значение трех квантовых чисел - n, l, m (главного, орбитального и магнитного) может быть одинаковым, однако спиновые квантовые числа (s) различаются, то есть имеются электроны с противоположными спинами .

Пополнение подуровней электронами было выяснено с помощью правила В.М. Клечковского (1900-1972 гг.) согласно которому, электроны заполняют энергетические подуровни в следующем порядке:



Порядок заполнения ячеек (клеточек) энергических уровней электронами подчиняется правилу Хунда. Сначала происходит заполнение ячеек 2р заняты шестью электронами. Следующий электрон, согласно правилу Клечковского, переходит в энергетический подуровень 3s:

19. Правило Клечковского гласит:

Правило n + l предложено в 1936 г. немецким физиком Э. Маделунгом; в 1951 г. было вновь сформулировано В. М. Клечковским.

Электронная оболочка атома - область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не превышает определенного максимального значения.

Порядок заполнения электронных оболочек (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числаl) определяется Правилом Хунда.

20.А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома.

Атомное ядро состоит из нуклонов - положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия

Количество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуруэлектронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называютсяизотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом () и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Ядерная реакция - процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом. Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

· реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергиисталкивающихся частиц (примерно до 10 МэВ).

· прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Лишь небольшая часть нуклидов являются стабильными. В большинстве случаев ядерные силы оказываются неспособны обеспечить их постоянную целостность, и ядра рано или поздно распадаются. Это явление получило название радиоактивности.

Радиоактивность

Радиоактивностью называется способность атомного ядра самопроизвольно распадаться с испусканием частиц. Радиоактивный распад характеризуется временем жизни радиоактивного изотопа, типом испускаемых частиц, их энергиями.
Основными видами радиоактивного распада являются:

  • α-распад – испускание атомным ядром α-частицы;
  • β-распад – испускание атомным ядром электрона и антинейтрино, позитрона и нейтрино, поглощение ядром атомного электрона с испусканием нейтрино;
  • γ-распад – испускание атомным ядром γ-квантов;

· спонтанное деление – распад атомного ядра на два осколка сравнимой массы.

21. периодическая система и периодический закон К началу XIX в. было известно около 30 элементов, к середине XIX в.- около 60. По море накопления числа элементов возникла задача их систематизации. Таких попыток до Д.И. Менделеева было не меньше пятидесяти; за основу систематизации принимались: и атомный вес (ныне называемый атомной массой), и химический эквивалент, и валентность. Подходя к классификации химических элементов метафизически, пытаясь систематизировать только известные в то время элементы, ни один из предшественников Д. И. Менделеева не мог открыть всеобщую взаимосвязь элементов, создать единую стройную систему, отражающую закон развития материи. Эта важная, для науки задача была блестяще разрешена в 1869 г. великим русским ученым Д. И. Менделеевым, открывшим периодический закон.
За основу систематизации Менделеевым были взяты: а) атомный вес и б) химическое сходство между элементами. Наиболее ярким, выразителем сходства свойств элементов является их одинаковая высшая валентность. Как атомный вес (атомная масса), так и высшая валентность элемента представляют собой количественные, числовые константы, удобные для систематизации.
Расположив все известный в то время 63 элемента в ряд по возрастанию атомных масс, Менделеев заметил периодическую повторяемость свойств элементов через неодинаковые промежутки. В результате Менделеевым был создан первый вариант периодической системы.
Закономерный характер изменения атомных масс элементов по вертикалям и горизонталям таблицы, а также образовавшиеся в ней пустые мecта позволили Менделееву смело предсказать наличие n природе ряда элементов, еще не известных в то время науке и даже наметить их атомные массы и основные свойства, исходя из предполагаемого положения элементов в таблице. Это можно било сделать лишь на основе системы, объективно отражающей закон развития материи. Сущность периодического закона Д. И. Менделеев сформулировал в 1869 г.: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов (масс) элементов".

Конструкция современной периодической системы в принципе мало отличается от варианта 1871 г. Символы элементов в периодической системе расположены по вертикальным и горизонтальным графам. Это приводит к объединению элементов в группы, подгруппы, периоды. Каждый элемент занимает в таблице определенную клетку. Вертикальные графы – это группы (и подгруппы), горизонтальные – периоды (и ряды).

Ковалентная связь

Связь, возникающая при взаимодействии электронов с образованием обобщенных электронных пар, называется ковалентной.

В случае если взаимодействующие атомы имеют равные значения электроотрицательности, общая электронная пара в равной степени принадлежит обоим атомам, то есть находится на равном расстоянии от обоих атомов. Такая ковалентная связь называется неполярной . Она имеет место в простых веществах-неметаллах: H22, О22, N22, Cl22, P44, O33.

При взаимодействии атомов, имеющих различные значения электроотрицательности, например водорода и хлора, общая электронная пара оказывается смещенной в сторону атома с большей электроотрицательностью, то есть в сторону хлора.

Атом хлора приобретает частичный отрицательный заряд, а атом водорода - частичный положительный. Это пример полярной ковалентной связи .

Свойства ковалентной связи

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства органических соединений.

Направленность связи обусловливает молекулярное строение органических веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер.

Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

23. Ионная связь - химическая связь, образующаяся между атомами с большой разностьюэлектроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.
Так как ион может притягивать к себе ионы противоположного знака в любом направлении, ионная связь от ковалентной отличается ненаправленностью.

Взаимодействие друг с другом двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. Поэтому они могут притягивать и другие ионы противоположного знака, то есть ионная связь отличается ненасыщенностью.

24. Металлическая связь - химическая связь между атомами в металлическом кристалле, возникающая за счёт обобществления их валентных электронов.

Металлическая связь - связь между положительными иона­ми в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соот­ветствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отры­ваться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные элек­троны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.

Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.

Водородная связь

Атом водорода, соединенный с атомом фтора, кислорода или азота (реже - хлора, серы или других неметаллов), может образовывать еще одну дополнительную связь. Это открытие, сделанное в восьмидесятых годах девятнадцатого столетия, связывают с именами русских химиков М.А. Ильинского и Н.Н. Бекетова. Было установлено, что некоторые водородсодержащие группы атомов часто образуют устойчивую химическую связь с электроотрицательными атомами, входящими в состав другой или той же самой молекулы. Такая химическая связь получила название водородной связи.

Водородная связь - это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: А−Н... В (чертой обозначена ковалентная связь, тремя точками - водородная связь).

Водородная связь обусловлена электростатическим притяжением атома водорода (несущим положительный заряд δ+) к атому электроотрицательного элемента, имеющего отрицательный заряд δ−. В большинстве случаев она слабее ковалентной, но существенно сильнее обычного притяжения молекул друг к другу в твердых и жидких веществах. В отличие от межмолекулярных взаимодействий водородная связь обладает свойствами направленности и насыщаемости, поэтому ее нередко считают одной из разновидностей ковалентной химической связи. Она может быть описана с помощью метода молекулярных орбиталей как трехцентроваядвухэлектронная связь.

Одним из признаков водородной связи может служить расстояние между атомом водорода и другим атомом, ее образующим. Оно должно быть меньше, чем сумма радиусов этих атомов. Чаще встречаются несимметричные водородные связи, в которых расстояние Н... В больше, чем А−В. Однако в редких случаях (фтороводород, некоторые карбоновые кислоты) водородная связь является симметричной. Угол между атомами во фрагменте А−Н... В обычно близок к 180 o . Наиболее сильные водородные связи образуются с участием атомов фтора. В симметричном ионе − энергия водородная связи равна 155 кДж/моль и сопоставима с энергией ковалентной связи. Энергия водородная связи между молекулами воды уже заметно меньше (25 кДж/моль).

26. Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

· Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).

· В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Закон Гесса (1841г.)

Тепловой эффект (энтальпия) процесса зависит только от начального и конечного состояния и не зависит от пути перехода его из одного состояния в другое.

28. Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции - величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение умножается на −1.

В 1865 году Н. Н. Бекетовым и в 1867 году Гульдбергом и Вааге был сформулирован закон действующих масс: скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в степени, равные их стехиометрическим коэффициентам

Для элементарных реакций показатель степени при значении концентрации каждого вещества часто равен его стехиометрическому коэффициенту, для сложных реакций это правило не соблюдается. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы:

· природа реагирующих веществ,

· наличие катализатора,

· температура (правило Вант-Гоффа, Уравнение Аррениуса),

· давление,

· площадь поверхности реагирующих веществ.

Если мы рассмотрим самую простую химическую реакцию A + B → C, то мы заметим, что мгновенная скорость химической реакции величина непостоянная

29.Закон действия масс. В 1865 г. профессор Н.Н. Бекетов впервые высказал гипотезу о количественной взаимосвязи между массами реагентов и временем течения реакции.Эта гипотеза нашла подтверждение в законе действующих масс, который был установлен в 1867 г. двумя норвежскими химиками К. Гульдбергом и П. Вааге. Современная формулировка закона действующих масс такова:

При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

СОСТАВ И ЭЛЕКТРОННАЯ
СТРУКТУРА АТОМА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ
К ОБУЧАЮЩЕЙ ПРОГРАММЕ ДЛЯ УЧАЩИХСЯ
СПЕЦИАЛИЗИРОВАННЫХ КЛАССОВ
ОБЩЕОБРАЗОВАТЕЛЬНЫХ ШКОЛ

Продолжение. Начало см. в № 4, 6/2005

Методические указания

17. Учитывая описанные закономерности, рассмотрите состояние и распределение электронов по энергетическим уровням и орбиталям для атомов калия (Z = 19) и скандия (Z = 21).

Решение

1) Предшествующий калию в ПСХЭ элемент аргон (Z = 18) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома аргона:

Электронно-графическая формула атома аргона:

При распределении электронов в атоме К в соответствии с правилом Клечковского предпочтение отдается орбитали 4s (сумма квантовых чисел n + l равна: 4 + 0 = 4) по сравнению с орбиталью 3d (сумма квантовых чисел n + l равна: 3 + 2 = 5) как орбитали, имеющей минимальное значение n + l. Следовательно, для атома калия распределение электронов по орбиталям (электронно-графическая формула) имеет вид (см. п. 16 методических указаний):

Калий относится к s -элементам со следующей электронной формулой (конфигурацией) атома:

Распределение электронов по энергетическим уровням для атома К изображено ниже:

2) Предшествующий скандию в ПСХЭ элемент кальций (Z = 20) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома кальция:

Из орбиталей 3d (n + l равно: 3 + 2 = 5) и 4p (n + l равно: 4 + 1 = 5) при распределении электронов в атоме скандия по орбиталям предпочтение следует отдать 3d -орбитали как имеющей минимальное значение n = 3 при одинаковых суммах квантовых чисел (n + l ), равных пяти. Следовательно, скандий относится к d -элементам, и его атом характеризуется следующим распределением электронов по орбиталям:

Электронная формула атома скандия:

Распределение электронов по энергетическим уровням для атома Sc изображено ниже:

18. Дополните рисунок так, чтобы показать вид одной s -орбитали и трех р -орбиталей, ориентированных вдоль осей.

Таблица 5

Распределение электронов
по квантовым уровням и подуровням

Оболочка Энергетический
уровень n
Энергетический
подуровень l
Магнитное
число m
Число
орбиталей
Предельное
число
электронов
K 1 0 (s) 0 1 2
L 2 0 (s)
1 (p)
+1, 0, –1
1
3
4
2
6
8
M 3 0 (s)
1 (p)
2 (d)
0

1, 0, –1
+2, +1, 0, –1, –2

1
3
5
9
2
6
10
18
N 4 0 (s)
1 (p)
2 (d)
3 (f)
0
+1, 0, –1
+2, +1, 0, –1, –2
+3, +2, +1, 0, –1, –2, –3
1
3
5
7
16
2
6
10
14
32

20. Последовательность заполнения энергетических уровней атомов см. в табл. 6.

21. Число элементов в периоде таблицы Д.И.Менделеева определяется формулами:

а) для нечетных периодов:

L n = (n + 1) 2 /2,

б) для четных периодов:

L n = (n + 2) 2 /2,

где L n – число элементов в периоде, n – номер периода.

Определите число элементов в каждом периоде ПСХЭ Д.И.Менделеева.

Объясните:

а) полученную числовую закономерность с позиций состояния электронов в атомах и их распределения по энергетическим уровням;

б) разделение групп элементов на главные и побочные подгруппы;

в) предопределенность числа главных и побочных подгрупп в ПСХЭ Д.И.Менделеева с точки зрения теории строения атомов.

Проверьте в дальнейшем свои выводы по приложению 1 (П-21).

22. Строгая периодичность расположения элементов в ПСХЭ Д.И.Менделеева полностью объясняется последовательным заполнением энергетических уровней атомов (см. выше п. 20). Укреплению позиций периодического закона на основе закономерностей изменения электронной структуры атомов элементов, впервые предсказанных Н.Бором, способствовало открытие 72-го элемента. Еще не открытый тогда элемент химики искали среди минералов, содержащих редкоземельные элементы, исходя из неправильной предпосылки, что к лантаноидам следует отнести 15 элементов.

По аналогии с переходными элементами число лантаноидов (элементы № 58–71) должно быть равно разности между максимальными числами электронов на N и М энергетических уровнях
(32 – 18 = 14), т. е. равно максимальному числу электронов на f -подуровне (см. выше п. 19). Элемент с Z = 72 (гафний Hf) является аналогом циркония Zr и был обнаружен в циркониевых рудах.

23. Следующим важным выводом из анализа табл. 6 в п. 20 является вывод о периодичности заполнения электронами внешних энергетических уровней атомов, чем обусловлена периодичность изменения химических свойств элементов и их соединений.

Таблица 6

Электронные конфигурации атомов
первых 20 элементов периодической системы

Атомный
номер
Обоз-
начение
Слой K L M N
n 1 2 3 4
l 0 0, 1 0, 1, 2 0, 1, 2, 3
Подуровень 1s 2s , 2p 3s , 3p , 3d 4s , 4p , 4d , 4f
Число электронов на данном подуровне
1
2
H
He
1
2
3
4
5
6
7
8
9
10
Li
Be
B
C
N
O
F
Ne
2
2
2
2
2
2
2
2
1, 0
2, 0
2, 1
2, 2
2, 3
2, 4
2, 5
2, 6
11
12
13
14
15
16
17
18
Na
Mg
Al
Si
P
S
Cl
Ar
2
2
2
2
2
2
2
2
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
1, 0, 0
2, 0, 0
2, 1, 0
2, 2, 0
2, 3, 0
2, 4, 0
2, 5, 0
2, 6, 0
19
20
K
Ca
2
2
2, 6
2, 6
2, 6, 0
2, 6, 0
1, 0, 0, 0
2, 0, 0, 0

Так, второй период таблицы Д.И.Менделеева состоит из восьми элементов со следующими подуровнями:

3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne
1s 2 2s 1 1s 2 2s 2 1s 2 2s 2 2p 1 1s 2 2s 2 2p 2 1s 2 2s 2 2p 3 1s 2 2s 2 2p 4 1s 2 2s 2 2p 5 1s 2 2s 2 2p 6

При переходе от лития к неону заряд ядра атома постепенно увеличивается от Z = 3 до Z = 10, а значит, возрастают силы притяжения электронов к ядру, и в результате радиусы атомов этих элементов уменьшаются. Поэтому способность атома отдавать электроны (типично металлическое свойство), ярко выраженная у атома лития, постепенно ослабевает при переходе от лития к фтору. Последний является типичным неметаллом, т. е. элементом более, чем другие, способным присоединять электроны.

Начиная со следующего за неоном элемента (Na, Z = 11) электронные структуры атомов повторяются, и поэтому электронные конфигурации их внешних электронных оболочек обобзначаются сходным образом (n – номер периода):

ns 1 (Li, Na), ns 2 (Be, Mg), ns 2 np 1 (B, Al), ns 2 np 2 (C, Si) и т. д.

В четвертом периоде таблицы Д.И.Менделеева появляются переходные элементы, принадлежащие побочным подгруппам.

24. Элементы, принадлежащие одной и той же подгруппе, имеют сходный характер расположения электронов на внешних электронных уровнях атомов. Например, атомы галогенов (главная подгруппа VII группы) все имеют электронную конфигурацию ns 2 np 5 , а атомам элементов побочной подгруппы той же группы свойственна электронная конфигурация (n – 1)s 2 (n – 1)p 6 (n – 1)d 5 ns 2 .

В чем заключается суть сходства и различия атомов элементов, принадлежащих разным подгруппам одной и той же группы таблицы Д.И.Менделеева? Свои выводы в дальнейшем сверьте с приложением 1 (П-24).

25. Численное значение валентности атома, определяемое числом образованных им ковалентных химических связей, отражает положение элемента в ПСХЭ Д.И.Менделеева. Во многих случаях валентность атома элемента в соединении численно равна номеру группы в ПСХЭ Д.И.Менделеева. Однако из этого правила существуют исключения. Например, у атома фосфора на внешнем (третьем, М ) энергетическом уровне находятся три неспаренных электрона (3р -орбитали) и свободные валентные ячейки d -орбиталей. Следовательно, для атома фосфора характерно так называемое возбуждение электрона, связанное c распариванием электронной пары и переходом одного их образующихся неспаренных электронов на 3d -орбиталь. Для возбужденного состояния атома фосфора возможно образование пяти ковалентных связей, а для основного – только трех.

Для атома азота возбужденное состояние нетипично, поскольку в этом атоме на внешнем энергетическом уровне количество и состояние электронов такое же, как в атоме фосфора, но вакантных ячеек нет, и для завершения и устойчивости этого уровня недостает всего трех электронов.

Почему же тогда максимальная валентность атома азота в соединениях (т.е. способность к образованию общих электронных пар) все же не III, а IV?

26. Повторив пп. 16, 17 методической разработки, можно объяснить порядок заполнения электронами энергетических уровней в атомах элементов 4-го большого периода ПСХЭ Д.И.Менделеева. Четный ряд этого периода начинается элементами главных подгрупп – 39 К и 40 Са, являющимися типичными металлами с постоянной валентностью, а уже с элемента № 21 (Z = 21, Sс) далее идут элементы побочных подгрупп, называемые d- элементами или переходными. Попробуйте объяснить суть этих названий, привести соответствующие примеры. Правильность своих выводов в дальнейшем сверьте с приложением 1 (П-26).

27. Химический знак водорода Н в ПСХЭ Д.И.Менделеева помещают и в главную подгруппу
I группы, и в главную подгруппу VII группы. Почему это допустимо? Проверьте в дальнейшем правильность своих выводов по приложению 1 (П-27).

При распределении электронов по квантовым ячейкам следует руководство-
ваться принципом Паули: в атоме не может быть двух электронов с одинаковым
набором значений всех квантовых чисел, т. е. атомная орбиталь не может содер-
жать более двух электронов, причем их спиновые моменты должны быть проти-
воположными

Система обозначений в общем виде выглядит так:

где п − главное, ℓ − орбитальное квантовые числа; х − количество электронов,
находящихся в данном квантовом состоянии. Например, запись 4d3 может быть
истолкована следующим образом: три электрона занимают четвертый энергетиче-
ский уровень, d- подуровень.

Характер застройки энергетических подуровней определяет принадлежность
элемента к тому или иному электронному семейству.

В s-элементах происходит застройка внешнего s-подуровня, например,

11 Na 1s2 2s2 2p6 3s1
В р-элементах происходит застройка внешнего р-подуровня, например,

9 F 1s 2s2 2p5 .

К s- и p- семействам относятся элементы главных подгрупп периодической табли-
цы Д. И. Менделеева.

В d-элементах происходит застройка d-подуровня предпоследнего уровня,
например,
2 2 6 2 6 2 2
22Ti 1s 2s 2p 3s 3p 3d 4s .

К d-семейству относятся элементы побочных подгрупп. Валентными у этого се-
мейства являются s-электроны последнего энергетического уровня и d-электроны
предпоследнего уровня.

В f-элементах происходит застройка f-подуровня третьего наружного уровня,
например,

58Се 1s22s22p63s23p63d l04s24p64d l04f l5s25p65d16s2.

Представителями f-электронного семейства являются лантаноиды и актиноиды.

Квантовое число может принимать два значения: Поэтому в состояниях с данным значением могут находиться в атоме не более электронов:

Основы зонной теории

Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).

В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 10 20), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов - энергетических зон. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней - зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

В основе зонной теории лежат следующие главные приближения :

1. Твёрдое тело представляет собой идеально периодический кристалл.

2. Равновесные положения узлов кристаллической решётки фиксированы, то есть ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны какфононы, вводятся впоследствии как возмущение электронного энергетического спектра.

3. Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

Ряд явлений, по существу многоэлектронных, таких, как ферромагнетизм, сверхпроводимость, и таких, где играют роль экситоны, не может быть последовательно рассмотрен в рамках зонной теории. Вместе с тем, при более общем подходе к построению теории твёрдого тела оказалось, что многие результаты зонной теории шире её исходных предпосылок.

Фотопроводимость.

Фотопроводи́мость - явление изменения электропроводности вещества при поглощении электромагнитного излучения, такого как видимое, инфракрасное, ультрафиолетовое или рентгеновское излучение.

Фотопроводимость свойственна полупроводникам. Электропроводность полупроводников ограничена нехваткой носителей заряда. При поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Оба носителя заряда при приложении к полупроводнику напряжения создают электрический ток.

При возбуждении фотопроводимости в собственном полупроводнике энергия фотона должна превышать ширину запрещенной зоны. В полупроводнике с примесями поглощение фотона может сопровождаться переходом из расположенного в запрещённой зоне уровня, что позволяет увеличить длину волны света, который вызывает фотопроводимость. Это обстоятельство важно для детектирования инфракрасного излучения. Условием высокой фотопроводимости является также большойпоказатель поглощения света, который реализуется в прямозонных полупроводниках

Квантовые явления

37) Строение ядра и радиоактивность

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома.

оличество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом () и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава (заряда Z , массового числа A ) или внутреннего строения нестабильных атомных ядер путём испусканияэлементарных частиц, гамма-квантов и/или ядерных фрагментов . Процесс радиоактивного распада также называют радиоакти́вностью , а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.