Меню
Бесплатно
Главная  /  Истории успеха  /  Цп автоматизированные системы управления и промышленная безопасность. Дискретные и непрерывные модели Классификация моделей и моделирования

Цп автоматизированные системы управления и промышленная безопасность. Дискретные и непрерывные модели Классификация моделей и моделирования

модель материальный скачкообразный дискретный

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: X Z Y.

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта - вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b).

Непрерывность и дискретность.

Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z, Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность -- к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего - замена непрерывной математической функции на набор ее значений в фиксированных точках.

Непрерывные математические модели

Для реализации ММ, представляемых ДУЧП или системами ОДУ, используются численные методы непрерывной математики, поэтому рассмотренные ММ называют непрерывными.

На рис. 1 показаны преобразования непрерывных ММ в процессе перехода от исходных формулировок задач к рабочим программам, представляющим собой последовательности элементарных арифметических и логических операций. Стрелками 1, 2 и 3 показаны переходы от описания структуры объектов на соответствующем иерархическом уровне к математической формулировке задачи. Дискретизация (4) и алгебраизация (5) ДУЧП по пространственным переменным осуществляются методами конечных разностей (МКР) или конечных элементов (МКЭ). Применение МКР или МКЭ к стационарным ДУЧП приводит к системе алгебраических уравнений (АУ), а к нестационарным ДУЧП--к системе ОДУ. Алгебраизация и дискретизация системы ОДУ по переменной t осуществляются методами численного интегрирования. Для нелинейных ОДУ (6) это преобразование приводит к системе нелинейных АУ, для линейных ОДУ (7) -- к системе линейных алгебраических уравнений (ЛАУ). Нелинейные АУ решаются итерационными методами. Стрелка 8 соответствует решению методом Ньютона, основанному на линеаризации уравнений, стрелка 9--методами Зейделя, Якоби, простой итерации и т. п. Решение системы ЛАУ сводится к последовательности элементарных операций (10) с помощью методов Гаусса или LU-разложения.

Рис. 1

Непрерывные ММ и используемые для их анализа методы вычислительной математики получили широкое распространение в САПР различных отраслей промышленности.

Создание методики автоматического формирования математических моделей систем позволило автоматизировать процедуры анализа и верификации широкого класса технических объектов. Инвариантный характер этой методики обусловил разработку на ее основе методов и алгоритмов, реализованных во многих ПМК проектирования электронных, механических, гидравлических, теплоэнергетических устройств и систем. Известны такие методы формирования ММ как узловой метод, контурный метод, метод переменных состояния.

Дискретные математические модели

Дискретной математической моделью называется модель, в которой выполнена дискретизация тех или иных переменных. Рассмотрим ММ, в которых дискретными являются зависимые переменные, характеризующие состояние моделируемого объекта.

Проектирование систем на функционально-логическом и системном уровнях основано на применении дискретных ММ. При моделировании в подсистемах функционально-логического проектирования принимаются те же допущения, что и при моделировании аналоговых систем на верхних уровнях. Кроме того, моделируемый объект представляется совокупностью взаимосвязанных логических элементов, состояния которых характеризуются переменными, принимающими значения в конечном множестве. В простейшем случае это множество {0, 1}. Непрерывное время t заменяется дискретной последовательностью моментов времени tк, при этом длительность такта. Следовательно, математической моделью объекта является конечный автомат (КА). Функционирование КА описывается системой логических уравнений КА

На системном уровне проектирования систем преимущественно распространены модели систем массового обслуживания (СМО). Для таких моделей характерно то, что в них отображаются объекты двух типов--заявки на обслуживание и обслуживающие аппараты (ОА). При проектировании ВС заявками являются решаемые задачи, а обслуживающими аппаратами--оборудование ВС. Заявка может находиться в состоянии «обслуживание» или «ожидание», а обслуживающий аппарат--в состоянии «свободен» или «занят». Состояние СМО характеризуется состояниями ее ОА и заявок. Смена состояний называется событием. Модели СМО используются для исследования процессов, происходящих в этой системе при подаче на входы потоков заявок. Эти процессы представляются последовательностями событий. По результатам исследования определяются наиболее важные выходные параметры системы: производительность, пропускная способность, вероятность и среднее время решения задач, коэффициенты загрузки оборудования.

Появление параллельных и конвейерных систем, необходимость моделировать процессы функционирования не только аппаратных, но и программных средств привело к появлению класса дискретных ММ, называемых сетями Петри. Сети Петри можно использовать для моделирования на функционально-логическом и системном уровнях проектирования широкого круга систем и сетей.

Сети Петри и СМО широко используются для описания функционирования производственных участков, линий и цехов, ориентированных на многономенклатурное производство изделий. Сети Петри -- эффективный инструмент разработки самих САПР. Эти сети могут служить моделями алгоритмов функционирования различных устройств дискретной автоматики.

Дискретные и непрерывные модели.

Структурные и функциональные модели.

В случае если в моделях первого вида отражается структура (устройство) изучаемой системы, представляющая собой набор взаимосвязанных элементов системы, то в функциональных моделях внимание уделяется не описанию структуры системы, а количественному описанию того, как данная система реагирует на внешние воздействия. В этом случае полученную модель называют "черным ящиком". Структурные модели, как правило, строятся для хорошо структуризованных систем. Функциональные модели строятся, в основном, для хорошо структуризованных процессов. Возможно, так же сочетание этих двух видов моделœей, в результате чего может получиться гибридная модель, позволяющая описывать слабо структуризованные системы и процессы. Примером таких моделœей являются системно-динамические модели, предназначенные для описания эколого-экономических процессов. Структурные модели используются, к примеру, в теории фирмы при изучении монополии или потребительского выбора. Примером применения функциональных моделœей может служить теория производственных функций.

Такое делœение моделœей исходит из делœения всœех величин на дискретные, принимающих значения в конечном числе точек выбранного интервала и непрерывные, принимающие значения на всœем интервале. Конечно, возможен и промежуточный случай. Как правило, большинство математических моделœей допускают как дискретную, так и непрерывную интерпретацию. В случае если в дискретном случае описание моделœей ведется на языке сумм и конечных разностей, то в непрерывных моделях - на языке интегралов и бесконечно-малых приращений. В качестве примера дискретных экономико-математических моделœей можно привести широко распространенные модели, связанные с целочисленным программированием, математической теорией игр, сетевым планированием. К числу непрерывных моделœей относятся различные модели математической экономики, в том числе рыночного равновесия, многие оптимизационные модели.

Линœейные и нелинœейные модели. Такое делœение моделœей исходит от характера взаимосвязей между элементами системы. В случае если в линœейных моделях предполагается линœейная зависимость между переменными, описывающими модель, то в нелинœейных моделях присутствуют связи между элементами, задаваемые нелинœейными функциями. Примером использования линœейных и нелинœейных моделœей в экономике является решение задач линœейного и соответственно нелинœейного программирования. В случае если линœейными моделями, как правило, описываются простые системы, то нелинœейными моделями, к числу которых относится большинство системно-динамических моделœей, описываются сложные системы. Возможно, также выделœение смешанных моделœей, примером которых бывают слабо нелинœейные модели.

Дискретность КА-модели по пространству является преимуществом с точки зрения математики и вычислительных процедур. Но с точки зрения практических приложений это является недостатком. Порой в фокусе исследования оказываются изменения ширины проема, коридора в пределах 5-15 см на объекте. В силу большего размера ячейки, КА-модели являются нечувствительными к таким изменениям линейных размеров объекта. Возникают проблемы с «расстановкой» мебели в таком дискретном пространстве (например, это актуально для детского сада, где размеры мебели в большинстве случаев не оказываются кратными размеру ячейки, при этом площади помещений весьма ограничены). Также в КА-моделях затруднительным является задание разных размеров и форм частицам.

Кроме того, в дискретной модели движение частицы может осуществляться только в одном из четырех направлениях, так как поле разделено на ячейки.

Минусом непрерывного подхода является то, что он основан на том, что движение людей описывается при помощи дифференциальных уравнений. Довольно сложным является определение правых частей этих уравнений .

Помимо этого существуют и положительные стороны этих моделей. Дискретная модель позволяет воспроизводить различные явления физического аспекта движения людей: слияние, переформирование (растекание, уплотнение), неодновременность слияния потоков, образование и рассасывание скоплений, обтекание поворотов, движение в помещениях с развитой внутренней планировкой, противотоки и пересекающиеся потоки. Предусмотрена возможность учета изменения видимости, информированности людей с планировкой здания, заблаговременного обхода препятствия, использование различными стратегиями движения (кратчайшего пути и кратчайшего времени) . А непрерывные модели позволяют учитывать массу и скорость отдельного человека (то есть его физические параметры). И в этой модели нет никаких ограничений на направление и длину шага .

Содержание задач, связанных с расчетом эвакуации, накладывает определенные требования к математическому аппарату, который следует использовать для моделирования процесса эвакуации. В последнее время частым явлением стали расчетные случаи, включающие помещения с развитой внутренней инфраструктурой (лекционные и зрительные залы, учебные классы, торговые залы и т.п.), важен учет уникальных физических параметров (включая возраст).

Объединение преимуществ обеих моделей позволило перейти на новую ступень в изучении движения людского потока. Появившаяся новая модель носит название полевой дискретно-непрерывной модели эвакуации «SigMA.DC» (Stochastic field Movement of Artificially People Intelligent discrete-continuous model - стохастическая полевая непрерывно-дискретная модель движения людей с элементами искусственного интеллекта).

Эта модель учитывает зависимость скорости человека от плотности, возраста, эмоционального состояния, группы мобильности. Она является непрерывной по пространству в выбранном направлении, но предполагается лишь конечное число направлений, куда может сдвинуться человек из текущей позиции .

В таблице 1 сведены наиболее значимые, по мнению многих исследователей, критерии для выбора математической модели, а также сравнительный анализ трех моделей из Методики расчета пожарного риска (Приложение к Приказу МЧС России N382 от 30.06.2009 ) и полевой модели эвакуации SigMA.DC. Приведенный список возник исходя из необходимости наиболее близко к реальному воспроизводить сценарии эвакуации из научных и образовательных учреждений со свойственной им спецификой: движение людей в помещениях с развитой инфраструктурой, различные роли (последовательность предписанных действий) отдельных эвакуирующихся, уникальные физические параметры (включая возраст), различный уровень информированности о правилах пожаробезопасности и планировки зданий, изменяющийся уровень видимости. Так же интересовал вопрос расширяемости модели для интеграции с моделями развития опасных факторов пожара.

Таблица 1 - Сравнительный анализ моделей упрощенной аналитической, индивидуально-поточной, имитационно-стахостической и полевой - SigMA.DC моделей эвакуации.

Критерии

Переформирование потока (растекание, уплотнение)

Слияние потоков

Неодновременность слияния

Расчленение

Образование и рассасывание скоплений

Учет неоднородности людского потока (вариабельность физического и эмоционального состояния)

Движение в помещении с развитой внутренней планировкой

Движение по участкам «неограниченной» ширины

Учет особенностей выбора людьми маршрутов эвакуации

Учет индивидуальных сценариев эвакуации (выполнение инструкций, задание ролей)

Учет противотоков и пересекающихся потоков

Учет условий видимости

Анализ данных из таблицы показывает, что подавляющее преимущество имеет полевая модель SigMA.DC.

Именно эта модель и является объектом изучения данной работы.

Лекция 1

Объектами изучения данного курса являются процессы и аппараты химической технологии.

Процессы химической технологии представляют собой физико-химические системы, которые характеризуются сложным взаимодействием фаз и компонентов. В ходе протекания технологических процессов в каждой точке фаз и на границе их раздела происходит перенос импульса, энергии или массы. Процессы химической технологии протекают в аппаратах, имеющих конкретные геометрические характеристики, которые в свою очередь, оказывают значимое влияние на течение процесса.

Для изучения различных физико-химических процессов, проверки научных гипотез и получения экспериментального материала издавна использовалось моделирование реальных объектов.

Моделированием называют исследование объекта путем создания и изучения его модели.

Моделирование является методом изучения объектов, при котором вместо объекта–оригинала исследование проводят на модели, а результаты исследования распространяют на объект–оригинал.

Различают два основных типа моделей – физические модели и математические модели. Соответственно, различают два метода моделирования: физическое и математическое.

Физическая модель в большинстве случаев представляет собой масштабированную копию реального объекта, которая сохраняет физическую природу протекающих в исследуемом объекте.

При использовании метода физического моделирования, должны выполняться два основных требования:

1. Эксперимент, проводимый на модели должен быть проще, экономичнее или безопаснее, эксперимента проводимого на реальном объекте.

2. Должны быть известны закономерности, связывающие модель и реальный объект.

Для объектов химической технологии такими закономерностями являются определённые соотношения, называемые критериями подобия: критерии Рейнольдса, Прандтля, Архимеда и т.д.

Согласно теории подобия необходимое физическое подобие модели и объекта обеспечивается при равенстве всех однотипных определяющих критериев подоби я.

Если количество рассматриваемых при изучении объекта явлений велико, то соответственно увеличивается необходимое количество определяющих критериев подобия. В таком случае бывает практически невозможно обеспечить равенство значений всех определяющих критериев подобия модели и объекта.

Отсюда следует, что возможности физического моделирования, основанного на теории подобия, существенно ограничены сложностью изучаемого объекта.

Для объектов, в которых физическое моделирование ограничено трудностями исследования, опасностью экспериментов, техническими сложностями или дороговизной создания физических моделей, используют математическое моделирование.

Математическая модель описывает процессы, происходящие в реальном объекте в символьном виде, т.е. в виде математических выражений.

Изучение объекта методом математического моделирования заключается в решении системы уравнений математического описания объекта.

Существуют различные виды математических моделей, которые можно условно классифицировать по следующим признакам:

1. По характеру временного описания:

непрерывные и дискретные.

Непрерывные модели позволяют получить характеристики объекта в каждый текущий момент времени;

дискретные модели позволяют получить характеристики объекта в фиксированной последовательности промежутков времени.

Для описания динамики моделируемых процессов в имитационном моделировании реализован механизм задания модельного времени. Эти механизмы встроены в управляющие программы любой системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты. Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе) t0, которую называют модельным (или системным) временем.

Существуют два основных способа изменения t 0 :

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • no-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случае пошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага (принцип t). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

По-событийный метод (принцип "особых состояний"). В нем координаты времени меняются только когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительно в случае, если частота наступления событий невелика, тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Способ фиксированного шага применяется:

если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. При их использовании динамика модели является дискретным приближением реальных непрерывных процессов; когда события распределены равномерно и можно подобрать шаг изменения временной координаты; когда сложно предсказать появление определенных событий; когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод. Он предпочтителен, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.


Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.