Меню
Бесплатно
Главная  /  Истории успеха  /  Дайте определение закону гука. Закон Гука

Дайте определение закону гука. Закон Гука

Закон Гука формулируется так: сила упругости, которая возникает при деформации тела, вследствие приложения сторонних сил, пропорционально его удлинению. Деформация в свою очередь это изменение межатомных или межмолекулярных расстояние вещества под действием внешних сил. Сила упругости это сила, которая стремится вернуть эти атомы или молекулы в состояние равновесия.


Формула 1 - Закон Гука.

F - Сила упругости.

k - жесткость тела (Коэффициент пропорциональности, который зависит от материала тела и его формы).

x - Деформация тела (удлинение или сжатие тела).

Этот закон был открыт Робертом Гуком в 1660г. Он провел опыт, который заключался в том что. Тонкая стальная струна была закреплена одним концом, а ко второму концу прикладывалось различное усилие. Проще говоря, струна была подвешена к потолку, и к ней прикладывался груз различной массы.

Рисунок 1 - Растяжение струны под действием силы тяжести.

В результате опыта Гук выяснил, что в небольших приделах зависимость растяжения тела линейна относительно силы упругость. То есть при приложении единицы силы, тело удлиняется, на единицу длинны.

Рисунок 2 - График зависимости силы упругости от удлинения тела.

Нуль на графике это исходная длинна тела. Все что справа это увеличение длинны тела. Сила упругости при этом имеет отрицательное значение. То есть она стремиться вернуть тело в исходное состояние. Соответственно направлена встречно деформирующей силе. Все что слева сжатие тела. Сила упругости положительна.

Растяжение струны зависти не только от внешней силы, но и от сечения струны. Тонкая струна еще как-то растянется от небольшого веса. А вот если взять струну, той же длинны, но диаметром скажем в 1 м. То сложно себе представить какой вес потребуется для ее растяжения.

Для оценки того как сила действует на тело определенного сечения вводится понятие нормальное механическое напряжение.

Формула 2 - нормальное механическое напряжение.

S-Площадь поперечного сечения.

Это напряжение, в конечном счете, пропорционально относительному удлинению тела. Относительное удлинение это отношение приращения длинны тела к его общей длине. А коэффициент пропорциональности называется модулем Юнга. Модуль потому что значение удлинение тела берется по модулю, без учета знака. Не берется во внимание, укорачивается тело или удлиняется. Важно изменение его длинны.

Формула 3 - Модуль Юнга.

|e|- Относительное удлинение тела.

s- нормальное напряжение тела.

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Именно физика является основой основ, именно эта лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо , значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда;
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение : деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 , из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин :

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от);
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

. 

Вывод

Сформулируем закон Гука при растяжении и сжатии : при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Всё, что происходит в природе, основывается на действии различных сил – закон Гука является тому подтверждением. Это одно из основополагающих явлений науки.

Этот процесс является определяющим звеном процессов сжатия, изгибов, растяжения и других видоизменений материалов различных структур.

Разберёмся, в чем же заключается этот закон, как можно применить правило Гука на практике, и всегда ли оно выполняется.

Определение и формула закона Гука

Давно люди пытались объяснить происхождение явлений сжатия и растяжения. Отсутствие знаний являлось причиной накопления экспериментальных данных. Собственно, свою теорему английский испытатель Гук открыл из своих наблюдений и опытов. Только позже, после смерти ученого, современники назовут выведенную им аксиому – законом Гука.

Исследователь заметил, что при каждом упругом воздействии на объект появляется сила, которая возвращает его в исходную форму. Это и послужило началом экспериментов.

Аксиома Гука гласит:

При очень маленьких упругих воздействиях создается сила, пропорциональная изменению объекта, но противоположного знака по абсолютной величине перемещения его частиц.

Математически это определение можно записать следующим образом:

F x = F упр = — k * x ,

где в левой части указывается:

сила, действующая на тело;

x – перемещение тела (м);

k – коэффициент деформации, зависящий от свойств объекта.

Единица измерения, как и любой другой силы, является Ньютон.

Кстати, k еще называют жёсткостью тела, она измеряется в H/м. Жесткость обусловлена не внешними параметрами объекта, а зависит от его материала.

Правда, стоит учесть, что его закон справедлив только для упругих деформаций.

Сила упругости

Формулировка основывается на определении силы упругости. В чем же заключается ее отличие от других воздействий на тело?

На самом деле, сила упругости может возникать в любой точке тела при его упругой деформации. Что понимается под таким воздействием? Это изменение формы тела, при котором объект через определенный период времени возвращается в исходный вид.

А это в свою очередь происходит из-за молекулярного воздействия частиц: при любой деформации происходит изменение расстояния между молекулами объекта, а кулоновские силы притяжения или отталкивания стремятся вернуть тело в исходное положение.

Самая простая модель, демонстрирующая действие сил упругости, является пружинным маятником.

Какая формула выражает аксиому, установленную ученым в этом случае?

Тут аксиома Гука запишется в виде:

ε = α * S ,

где ε – относительное удлинение тела (его величина равна отношению удлинения к перемещению);

α – коэффициент пропорциональности (обратно пропорционален модулю Юнга Е);

S – механическое напряжение объекта (его величина равна отношению силы упругости к площади сечения тела).

Учитывая вышесказанное, уравнение можно записать так:

Δx / x = F упр / E * S ,

где Δx – максимальный сдвиг при деформации.

Стоит преобразовать данное выражение, тогда получим следующее:

F упр = (E * S / x ) Δx = k * Δx.

Поскольку сила упругости противоположна внешнему воздействию, то кратко закон читается таким образом:

F упр = — k * Δx.

В нем не зря упомянуты малые по величине деформации: при них Δx ̴ x, следовательно, F упр = — k * x.

При каких условиях выполняется закон Гука

А теперь посмотрим, каковы границы применимости этого выражения, и в каких условиях оно вообще выполняется.

Следует знать, что основным условием является:

s = E * e ,

где слева в уравнении находится напряжение, возникающее при деформации, а в правой части модуль Юнга и удлинение.

Причем, E зависит от характеристик частиц объекта, но не от его параметров формы, а второй множитель берется по модулю.

В целом аксиома Гука справедлива для многих ситуаций.

Так, при упругом изгибе пружины, лежащей на двух опорах, математическая запись теоремы выглядит следующим образом:

F упр = — m * g

F упр = — k * x

В иных ситуациях (при кручении, различных маятниках и других деформирующих процессах) аналогично записывается воздействие сил на объект.

Как применить закон упругой деформации на практике

Этот закон (обобщенный для многих ситуаций) является базовым в динамике и статике тел, поэтому его применимость осуществляется в областях, где необходимо проводить расчет жесткости и напряжения деформации объектов.

В первую очередь, правило Гука необходимо применять в строительстве и технике. Так, рабочие должны точно знать, какой максимальный груз может поднять башенный кран или какую нагрузку выдержит фундамент будущего здания.

Ни один из поездов не обходится без деформации растяжения и сжатия, поэтому закон Гука справедлив и для этих ситуаций. Кроме того, механизм и принцип действия любых динамометров, которыми снабжены некоторые части технического оборудования, также основываются на этом замечательном законе.

Закон Гука выполняется во всех объектах, являющихся аналогами модели «пружинный маятник».

В обычной жизни, дома, можно видеть применимость этого закона в пружинах некоторых механизмов.

Таким образом, закон Гука применим во многих сферах жизни человека. Он является одним из базовых явлений, на которых держится существование всей жизни на планете.

Заключение

Подводя итоги, следует отметить, что закон Гука – универсальный помощник в задачах с решениями по деформации объектов не только в студенческих книжках по сопромату, но и в различных инженерных областях.

Именно эти простые задания помогают ученым и мастерам создавать новые технические модели, необходимые в условиях современного технического прогресса.

Если на тело воздействовать некоторой силой, то его размер и (или) форма изменяются. Это процесс называют деформацией тела. В телах, подвергающихся деформациям, возникают силы упругости, уравновешивающие внешние силы.

Виды деформации

Все деформации можно разделить на два вида: упругие деформации и пластические .

Определение

Упругой называют деформацию, если после снятия нагрузки прежние размеры тела и его форма полностью восстанавливаются.

Определение

Пластической считают деформацию, при которой появившиеся, вследствие деформации, изменения размера и формы тела, после снятия нагрузки восстанавливаются частично.

Характер деформации зависит от

  • величины и времени воздействия внешней нагрузки;
  • материала тела;
  • состояния тела (температуры, способов обработки и т.д).

Резкой границы между упругой и пластической деформациями не существует. В большом числе случаев малые и кратковременные деформации можно считать упругими.

Формулировки закона Гука

Эмпирически получено, что чем большую деформацию необходимо получить, тем большую деформирующую силу следует приложить к телу. По величине деформации ($\Delta l$) можно судить о величине силы:

\[\Delta l=\frac{F}{k}\left(1\right),\]

выражение (1) означает, что абсолютная величина упругой деформации прямо пропорциональная приложенной силе. Данное утверждение является содержанием закона Гука.

При деформации удлинения (сжатия) тела выполняется равенство:

где $F$ - деформирующая сила; $l_0$ - начальная длина тела; $l$ - длина тела после деформации; $k$ - коэффициент упругости (коэффициент жесткости, жесткость), $ \left=\frac{Н}{м}$. Коэффициент упругости зависит от материала тела, его размеров и формы.

Так как в деформированном теле возникают силы упругости ($F_u$), которые стремятся восстановить прежние размеры и форму телу, то часто закон Гука формулируют относительно сил упругости:

Закон Гука хорошо работает для деформаций, которые возникают в стержнях из стали, чугуна, и других твердых веществ, в пружинах. Справедлив закон Гука для деформаций растяжения и сжатия.

Закон Гука для малых деформаций

Сила упругости зависит от изменения расстояния между частями одного и того же тела. Следует помнить, что закон Гука выполняется только для малых деформаций. При больших деформациях сила упругости не пропорциональна измерению длины, при дальнейшем увеличении деформирующего воздействия тело способно разрушаться.

Если деформации тела малы, то силы упругости можно определять по ускорению, которое данные силы сообщают телам. Если тело неподвижно, то модуль силы упругости находят из равенства нулю векторной суммы сил, которые действуют на тело.

Закон Гука можно записывать не только относительно сил, но часто его формулируют для такой величины как напряжение ($\sigma =\frac{F}{S}$ - сила, которая действует на единичную площадь поперечного сечения тела), тогда для малых деформаций:

\[\sigma =Е\frac{\Delta l}{l}\ \left(4\right),\]

где $Е$ - модуль Юнга;$\ \frac{\Delta l}{l}$ - относительное удлинение тела.

Примеры задач с решением

Пример 1

Задание. К стальному тросу длинной $l$, диаметром $d$ подвесили груз массой $m$. Каково напряжение в тросе ($\sigma $), а также абсолютное его удлинение ($\Delta l$)?

Решение. Сделаем рисунок.

Для того чтобы найти силу упругости, рассмотрим силы, которые действуют на тело, подвешенное к тросу, так как сила упругости будет равна по величине силе натяжения ($\overline{N}$). По второму закону Ньютона имеем:

В проекции на ось Y уравнения (1.1) получим:

По третьему закону Ньютона тело, действует на трос с силой равной по величине силе $\overline{N}$, трос, действует на тело с силой $\overline{F}$, равной$\overline{\ N,}$ но противоположного направления, так деформирующая трос сила ($\overline{F}$) равна:

\[\overline{F}=-\overline{N\ }\left(1.3\right).\]

Под воздействием деформирующей силы в тросе возникает сила упругости, которая равна по величине:

Напряжение в тросе ($\sigma $) найдем как:

\[\sigma =\frac{F_u}{S}=\frac{mg}{S}\left(1.5\right).\]

Площадь S - это площадь поперечного сечения троса:

\[\sigma =\frac{4mg\ }{{\pi d}^2}\left(1.7\right).\]

По закону Гука:

\[\sigma =Е\frac{\Delta l}{l}\left(1.8\right),\]

\[\frac{\Delta l}{l}=\frac{\sigma }{E}\to \Delta l=\frac{\sigma l}{E}\to \Delta l=\frac{4mgl\ }{{\pi d}^2E}.\]

Ответ. $\sigma =\frac{4mg\ }{{\pi d}^2};\ \Delta l=\frac{4mgl\ }{{\pi d}^2E}$

Пример 2

Задание. Какова абсолютная деформация первой пружины из двух последовательно соединенных пружин (рис.2), если коэффициенты жесткости пружин равны: $k_1\ и\ k_2$, а удлинение второй пружины составляет $\Delta x_2$?

Решение. Если система из последовательно соединенных пружин находится в состоянии равновесия, то силы натяжения данных пружин одинаковы:

По закону Гука:

Согласно (2.1) и (2.2) имеем:

Выразим из (2.3) удлинение первой пружины:

\[\Delta x_1=\frac{k_2\Delta x_2}{k_1}.\]

Ответ. $\Delta x_1=\frac{k_2\Delta x_2}{k_1}$.

Коэффициент E в этой формуле называется модулем Юнга . Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, E ≈ 2·10 11 Н/м 2 , а для резины E ≈ 2·10 6 Н/м 2 , то есть на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2. Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела .

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

Рисунок 1.12.3. Деформация растяжения пружины.

В отличие от пружин и некоторых эластичных материалов (например, резины) деформация растяжения или сжатия упругих стержней (или проволок) подчиняется линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.


§ 10. Сила упругости. Закон Гука

Виды деформаций

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил.
Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими , а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими .
Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба , кручения и сдвига .

Силы упругости

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая.

Мы рассмотрим случай возникновения сил упругости при одностороннем растяжении и сжатии твердого тела.



Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

где f - сила упругости; х - удлинение (деформация) тела; k - коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ - ньютон на метр (Н/м).

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Рассмотрим опыт, иллюстрирующий закон Гука. Пусть ось симметрии цилиндрической пружины совпадает с прямой Ах (рис. 20, а). Один конец пружины закреплен в опоре в точке А, а второй свободен и к нему прикреплено тело М. Когда пружина не деформирована, ее свободный конец находится в точке С. Эту точку примет за начало отсчета координаты х, определяющей положение свободного конца пружины.

Растянем пружину так, чтобы ее свободный конец находился в точке D, координата которой х>0: В этой точке пружина действует на тело М упругой силой

Сожмем теперь пружину так, чтобы ее свободный конец находился в точке В, координата которой х<0. В этой точке пружина действует на тело М упругой силой

Из рисунка видно, что проекция силы упругости пружины на ось Ах всегда имеет знак, противоположный знаку координаты х, так как сила упругости направлена всегда к положению равновесия С. На рис. 20, б изображен график закона Гука. На оси абсцисс откладывают значения удлинения х пружины, а на оси ординат - значения силы упругости. Зависимость fх от х линейная, поэтому график представляет собой прямую, проходящую через начало координат.

Рассмотрим еще один опыт.
Пусть один конец тонкой стальной проволоки закреплен на кронштейне, а к другому концу подвешен груз, вес которого является внешней растягивающей силой F, действующей на проволоку перпендикулярно ее поперечному сечению (рис. 21).

Действие этой силы на проволоку зависит не только от модуля силы F, но и от площади поперечного сечения проволоки S.

Под действием приложенной к ней внешней силы проволока деформируется, растягивается. При не слишком большом растяжении эта деформация является упругой. В упруго деформированной проволоке возникает сила упругости f уп.
Согласно третьему закону Ньютона, сила упругости равна по модулю и противоположна по направлению внешней силе, действующей на тело, т. е.

f уп = -F (2.10)

Состояние упруго деформированного тела характеризуют величиной s, называемой нормальным механическим напряжением (или, для краткости, просто нормальным напряжением ). Нормальное напряжение s равно отношению модуля силы упругости к площади поперечного сечения тела:

s=f уп /S (2.11)

Пусть первоначальная длина нерастянутой проволоки составляла L 0 . После приложения силы F проволока растянулась и ее длина стала равной L. Величину DL=L-L 0 называют абсолютным удлинением проволоки . Величину

называют относительным удлинением тела . Для деформации растяжения e>0, для деформации сжатия e<0.

Наблюдения показывают, что при небольших деформациях нормальное напряжение s пропорционально относительному удлинению e:

Формула (2.13) является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным. Коэффициент пропорциональности Е в законе Гука называется модулем продольной упругости (модулем Юнга).

Установим физический смысл модуля Юнга. Как видно из формулы (2.12), e=1 и L=2L 0 при DL=L 0 . Из формулы (2.13) следует, что в этом случае s=Е. Следовательно, модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза. (если бы для такой большой деформации выполнялся закон Гука). Из формулы (2.13) видно также, что в СИ модуль Юнга выражают в паскалях (1 Па = 1 Н/м 2).

Диаграмма растяжения

Используя формулу (2.13), по экспериментальным значениям относительного удлинения e можно вычислить соответствующие им значения нормального напряжения s, возникающего в деформированном теле, и построить график зависимости s от e. Этот график называют диаграммой растяжения . Подобный график для металлического образца изображен на рис. 22. На участке 0-1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения деформация является упругой и выполняется закон Гука, т. е. нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения s п, при котором еще выполняется закон Гука, называют пределом пропорциональности .

При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1-2), хотя упругие свойства тела еще сохраняются. Максимальное значение s у нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости . (Предел упругости лишь на сотые доли процента превышает предел пропорциональности.) Увеличение нагрузки выше предела упругости (участок 2-3) приводит к тому, что деформация становится остаточной.

Затем образец начинает удлиняться практически при постоянном напряжении (участок 3-4 графика). Это явление называют текучестью материала. Нормальное напряжение s т, при котором остаточная деформация достигает заданного значения, называют пределом текучести .

При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4-5 графика). Максимальное значение нормального напряжения s пр, при превышении которого происходит разрыв образца, называют пределом прочности .

Энергия упруго деформированного тела

Подставив в формулу (2.13) значения s и e из формул (2.11) и (2.12), получим

f уп /S=E|DL|/L 0 .

откуда следует, что сила упругости f уп, возникающая при деформации тела, определяется по формуле

f уп =ES|DL|/L 0 . (2.14)

Определим работу A деф, совершаемую при деформации тела, и потенциальную энергию W упруго деформированного тела. Согласно закону сохранения энергии,

W=A деф. (2.15)

Как видно из формулы (2.14), модуль силы упругости может изменяться. Он возрастает пропорционально деформации тела. Поэтому для подсчета работы деформации необходимо брать среднее значение силы упругости , равное половине от ее максимального значения:

= ES|DL|/2L 0 . (2.16)

Тогда определяемая по формуле A деф =|DL| работа деформации

A деф = ES|DL| 2 /2L 0 .

Подставив это выражение в формулу (2.15), найдем значение потенциальной энергии упруго деформированного тела:

W= ES|DL| 2 /2L 0 . (2.17)

Для упруго деформированной пружины ES/L 0 =k - жесткость пружины; х - удлинение пружины. Поэтому формула (2.17) может быть записана в виде

W=kx 2 /2. (2.18)

Формула (2.18) определяет потенциальную энергию упруго деформированной пружины.

Вопросы для самоконтроля:

 Что такое деформация?

 Какую деформацию называют упругой? пластической?

 Назовите виды деформаций.

 Что такое сила упругости? Как она направлена? Какова природа этой силы?

 Как формулируется и записывается закон Гука для одностороннего растяжения (сжатия)?

 Что такое жесткость? Какова единица жесткости в СИ?

 Начертите схему и объясните опыт, иллюстрирующий закон Гука. Постройте график этого закона.

 Сделав пояснительный рисунок, опишите процесс растяжения металлической проволоки под нагрузкой.

 Что называют нормальным механическим напряжением? Какая формула выражает смысл этого понятия?

 Что называют абсолютным удлинением? относительным удлинением? Какие формулы выражают смыйл этих понятий?

 Какой вид имеет закон Гука в записи, содержащей нормальное механическое напряжение?

 Что называют модулем Юнга? Каков его физический смысл? Какова единица модуля Юнга в СИ?

 Начертите и объясните диаграмму растяжения металлического образца.

 Что называют пределом пропорциональности? упругости? текучести? прочности?

 Получите формулы, по которым определяют работу деформации и потенциальную энергию упруго деформированного тела.