Меню
Бесплатно
Главная  /  Истории успеха  /  Как была измерена гравитационная постоянная. Физики уточнили значение гравитационной постоянной в четыре раза

Как была измерена гравитационная постоянная. Физики уточнили значение гравитационной постоянной в четыре раза

После изучения курса физики в головах у учащихся остаются всевозможные постоянные и их значения. Тема гравитации и механики не становится исключением. Чаще всего ответить на вопрос о том, какое значение имеет гравитационная постоянная, они не могут. Но всегда однозначно ответят, что она присутствует в законе всемирного тяготения.

Из истории гравитационной постоянной

Интересно, что в работах Ньютона нет такой величины. Она появилась в физике существенно позже. Если быть конкретнее, то только в начале девятнадцатого века. Но это не значит, что ее не было. Просто ученые ее не определили и не узнали ее точное значение. Кстати, о значении. Гравитационная постоянная постоянно уточняется, поскольку является десятичной дробью с большим количеством цифр после запятой, перед которой стоит ноль.

Именно тем, что эта величина принимает такое маленькое значение, объясняется то, что действие сил гравитации незаметно на небольших телах. Просто из-за этого множителя сила притяжения оказывается ничтожно маленькой.

Впервые опытным путем установил значение, которое принимает гравитационная постоянная, физик Г. Кавендиш. И случилось это в 1788 году.

В его опытах использовался тонкий стержень. Он был подвешен на тоненькой проволоке из меди и имел длину около 2 метров. К концам этого стержня были прикреплены два одинаковых свинцовых шара диаметром 5 см. Рядом с ними были установлены большие свинцовые шары. Их диаметр был уже 20 см.

При сближении больших и маленьких шаров наблюдался поворот стержня. Это говорило об их притяжении. По известным массам и расстоянию, а также измеренной силе закручивания удалось достаточно точно узнать, чему равно гравитационное постоянное.

А началось все со свободного падения тел

Если поместить в пустоту тела разной массы, то они упадут одновременно. При условии их падения с одинаковой высоты и его начала в один и тот же момент времени. Удалось рассчитать ускорение, с которым все тела падают на Землю. Оно оказалось приблизительно равно 9,8 м/с 2 .

Ученые установили, что сила, с которой все притягивается к Земле, присутствует всегда. Причем это не зависит от высоты, на которую перемещается тело. Один метр, километр или сотни километров. Как бы далеко ни находилось тело, оно будет притягиваться к Земле. Другой вопрос в том, как ее значение будет зависеть от расстояния?

Именно на этот вопрос нашел ответ английский физик И. Ньютон.

Уменьшение силы притяжения тел с их отдалением

Для начала он выдвинул предположение о том, что сила тяжести убывает. И ее значение находится в обратной зависимости от расстояния, возведенного в квадрат. Причем это расстояние нужно отсчитывать от центра планеты. И провел теоретические расчеты.

Потом этот ученый воспользовался данными астрономов о движении естественного спутника Земли — Луны. Ньютон рассчитал, с каким ускорением она вращается вокруг планеты, и получил те же результаты. Это свидетельствовало о правдивости его рассуждений и позволило сформулировать закон всемирного тяготения. Гравитационная постоянная в его формуле пока отсутствовала. На этом этапе было важно определить зависимость. Что и было сделано. Сила тяжести уменьшается обратно пропорционально расстоянию от центра планеты, возведенному в квадрат.

К закону о всемирном тяготении

Ньютон продолжил размышления. Поскольку Земля притягивает Луну, то и она сама должна притягиваться к Солнцу. Причем сила такого притяжения тоже должна подчиняться описанному им закону. А потом Ньютон распространил его на все тела вселенной. Поэтому и название закона включает слово «всемирное».

Силы всемирного тяготения тел определяются как пропорционально зависящие от произведения масс и обратные квадрату расстояния. Позже, когда был определен коэффициент, формула закона приобрела такой вид:

  • F т = G (m 1 *х m 2) : r 2 .

В ней введены такие обозначения:

Формула гравитационной постоянной вытекает из этого закона:

  • G = (F т Х r 2) : (m 1 х m 2).

Значение гравитационной постоянной

Теперь настал черед конкретных чисел. Поскольку ученые постоянно уточняют это значение, то в разные годы были официально приняты разные числа. К примеру, по данным за 2008 год гравитационная постоянная равна 6,6742 х 10 -11 Нˑм 2 /кг 2 . Прошло три года - и константу пересчитали. Теперь гравитационная постоянная равна 6,6738 х 10 -11 Нˑм 2 /кг 2 . Но для школьников в решении задач допустимо ее округление до такой величины: 6,67 х 10 -11 Нˑм 2 /кг 2 .

В чем физический смысл этого числа?

Если в формулу, которая дана для закона всемирного тяготения, подставить конкретные числа, то получится интересный результат. В частном случае, когда массы тел равны 1 килограмму, а расположены они на расстоянии 1 метра, сила тяготения оказывается равной самому числу, которое известно для гравитационной постоянной.

То есть смысл гравитационной постоянной заключается в том, что она показывает, с какой силой будут притягиваться такие тела на расстоянии одного метра. По числу видно, насколько мала эта сила. Ведь она в десять миллиардов меньше единицы. Ее даже невозможно заметить. Даже при увеличении тел в сотню раз результат существенно не изменится. Он по-прежнему останется гораздо меньше единицы. Поэтому становится понятно, отчего сила притяжения заметна только в тех ситуациях, если хотя бы одно тело имеет огромную массу. Например, планета или звезда.

Как связана гравитационная постоянная с ускорением свободного падения?

Если сравнить две формулы, одна из которых будет для силы тяжести, а другая для закона тяготения Земли, то можно увидеть простую закономерность. Гравитационная постоянная, масса Земли и квадрат расстояния от центра планеты составляют коэффициент, который равен ускорению свободного падения. Если записать это формулой, то получится следующее:

  • g = (G х M) : r 2 .

Причем в ней используются такие обозначения:

Кстати, гравитационную постоянную можно найти и из этой формулы:

  • G = (g х r 2) : M.

Если требуется узнать ускорение свободного падения на некоторой высоте над поверхностью планеты, то пригодится такая формула:

  • g = (G х M) : (r + н) 2 , где н — высота над поверхностью Земли.

Задачи, в которых требуется знание гравитационной постоянной

Задача первая

Условие. Чему равно ускорение свободного падения на одной из планет Солнечной системы, например, на Марсе? Известно, что его масса 6,23·10 23 кг, а радиус планеты 3,38·10 6 м.

Решение . Нужно воспользоваться той формулой, которая была записана для Земли. Только подставить в нее значения, данные в задаче. Получится, что ускорение свободного падения будет равно произведению 6,67 х 10 -11 и 6,23 х 10 23 , которое потом нужно разделить на квадрат 3,38·10 6 . В числителе получается значение 41,55 х 10 12 . А в знаменателе будет 11,42 х 10 12 . Степени сократятся, поэтому для ответа достаточно только узнать частное двух чисел.

Ответ : 3,64 м/с 2 .

Задача вторая

Условие. Что нужно сделать с телами, чтобы уменьшить их силу притяжения в 100 раз?

Решение . Поскольку массу тел изменять нельзя, то сила будет уменьшаться за счет удаления их друг от друга. Сотня получается от возведения в квадрат 10. Значит, расстояние между ними должно стать в 10 раз больше.

Ответ : отдалить их на расстояние, превышающее изначальное в 10 раз.

Являясь одной из фундаментальных величин в физике, гравитационная постоянная впервые была упомянута в 18-м веке. Тогда же были предприняты первые попытки измерить ее значение, однако в силу несовершенства приборов и недостаточных знаний в данной области, сделать это удалось лишь в середине 19-го столетия. Позже полученный результат неоднократно корректировался (в последний раз это было сделано в 2013 году). Однако же следует отметить, что принципиального различия между первым (G = 6,67428(67)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) и последним (G = 6,67384(80)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) значениями не существует.

Применяя данный коэффициент для практических расчетов, следует понимать, что константа является таковой в глобальных вселенских понятиях (если не делать оговорок на физику элементарных частиц и прочие малоизученные науки). А это значит, что гравитационная постоянная Земли, Луны или Марса не будут отличаться друг от друга.

Эта величина является базовой константой в классической механике. Поэтому гравитационная постоянная участвует в самых различных расчетах. В частности, не обладая сведениями о более-менее точном значении данного параметра, ученые не смогли бы вычислять столь важный в космической отрасли коэффициент, как ускорение свободного падения (который для каждой планеты или прочего космического тела будет своим).

Однако же Ньютону, озвучившему в общем виде, гравитационная постоянная была известна лишь в теории. То есть он смог сформулировать один из важнейших физических постулатов, не обладая сведениями о величине, на которой он, по сути, основывается.

В отличие от прочих фундаментальных констант, о том, чему равна гравитационная постоянная, физика может сказать лишь с определенной долей точности. Ее значение периодически получают заново, причем каждый раз оно отличается от предыдущего. Большинство ученых полагает, что данный факт связан не с ее изменениями, а с более банальными причинами. Во-первых, это методы измерения (для вычисления этой константы проводят различные эксперименты), а во-вторых, точность приборов, которая постепенно возрастает, данные уточняются, и получается новый результат.

С учетом того, что гравитационная постоянная является величиной, измеряемой 10 в -11 степени (что для классической механики сверхмалое значение), в постоянном уточнении коэффициента нет ничего удивительного. Тем более что коррекции подвергается символ, начиная с 14 после запятой.

Однако же есть в современной волновой физике иная теория, которую выдвинули Фред Хойл и Дж. Нарликар еще в 70-е годы прошлого века. Согласно их предположениям, гравитационная постоянная уменьшается со временем, что влияет на многие иные показатели, считающиеся константами. Так, американским астрономом ван Фландерном был отмечен феномен незначительного ускорения Луны и прочих небесных тел. Руководствуясь данной теорией, следует предположить, что никаких глобальных погрешностей в ранних вычислениях не было, а разница в полученных результатах объясняется изменениями самого значения константы. Эта же теория говорит о непостоянстве некоторых других величин, таких как

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    Фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    Тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

Группа физиков из Италии и Нидерландов представила новые результаты измерения гравитационной константы, впервые сделанные при помощи специальных устройств - атомных интерферометров. Значение, полученное учеными для постоянной: 6.67191(99)x10 -11 (метр) 3 (килограмм) -1 (секунда) -2 с точностью 0,015 процентов. Такие измерения являются важными не только для метрологии и систем геостационарного позиционирования, но и для исследований космоса и проверки моделей, основанных на общей теории относительности и современной космологии. Давайте разберемся, как проводилось измерение гравитационной постоянной, и к каким выводам пришли ученые в результате своих измерений.

Применение атомных интерферометров является относительно новым, но перспективным направлением в измерении гравитационных эффектов. Так, гироскоп, в работе которого используется эффект Саньяка , применялся для измерения ускорения, вызванного взаимодействием гравитирующих тел, в экспериментах по проверке закона всемирного тяготения и в геофизике. Ученые впервые использовали атомный интерферометр для прецизионного измерения значения гравитационной постоянной.

Относительная слабость гравитационного взаимодействия делает измерение его постоянной достаточно трудной задачей. В настоящее время в мире проведено около 300 измерений постоянной тяготения, начиная с классических опытов Кавендиша . Значение гравитационной постоянной исследователи определяли из закона всемирного тяготения Ньютона, согласно которому сила гравитационного притяжения между двумя массивными точками пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. В качестве коэффициента пропорциональности выступает гравитационная постоянная, которая носит универсальный характер, а ее конкретное значение зависит от выбора системы единиц измерения .

.
Сплошные круги показывают опыты с использованием крутильных весов, квадраты - опыты с применением маятника, верхний квадрат отвечает последнему эксперименту.
Изображение: Nature

Гравитационная константа входит в число шести фундаментальных физических постоянных, значение которых определяется экспериментом и, как считается, значительно не меняется (в пространстве и времени). Эти постоянные фигурируют во всех основных законах и уравнениях физики, через них выражаются многие другие производные постоянные. Кроме постоянной тяготения, к таким константам относятся значения скорости света в вакууме и элементарного электрического заряда, а также постоянные Планка, Больцмана и Дирака.

В классической физике интерференция света - явление, в котором проявляются волновые свойства света. С другой стороны, в квантовой механике имеет место корпускулярно-волновой дуализм - свет проявляет одновременно и волновые, и корпускулярные свойства (например, в явлении фотоэффекта). В квантовой механике интерференция волновой функции (пси-функции) возникает как проявление принципа квантовой суперпозиции - первоначальное квантовое состояние разделяется на две части, которые потом складываются (интерферируют), образуя так называемую интерференционную картину. Впрочем, то, что происходит между начальным состоянием частицы (или волновой функции) и возникновением интерференционной картины, остается загадкой.

Установка устроена следующим образом. В вакуумной камере в нижней части аппарата магнитооптическая ловушка собирает 109 атомов рубидия. После включения магнитного поля атомы поднимаются вверх по вертикали и оказываются между двумя группами вольфрамовых цилиндров. Всего в эксперименте использовались 24 цилиндра, изготовленных из сплава вольфрама, общей массой 516 килограмм. Каждый такой цилиндр имел имел диаметр 99 миллиметров и высоту около 150 миллиметров. Эти цилиндры помещались на две титановые платформы и располагались вокруг вертикальной оси с гексагональной симметрией.

Далее, чтобы исключить влияние тепловых флуктуаций, атомы охлаждают до четырех милликельвинов. В установке используются две атомные группировки, которые поднимаются на высоту около 60 и 90 сантиметров, так что расстояние по вертикали между ними составляет 328 миллиметров. Атомы в группировках находятся в специальных возбужденных состояниях. Те из них, которые находятся в состояниях, отличных от необходимых для эксперимента, удаляются.

Ученые измеряли изменения расположения верхней и нижней атомных группировок для двух положений системы цилиндров: F и C. В первом случае два набора цилиндров находились у края оснований установки, во втором - у центра. Перемещая цилиндры между положениями F и C, ученые с помощью атомной интерферометрии определяли изменения в значении величины напряженности гравитационного поля (ускорении свободного падения).

Изображение: Nature

Частоты импульсов лазера настроены на резонансную частоту сверхтонкого перехода между двумя уровнями энергий атомов. Переход между двумя такими уровнями в атомах, спровоцированный излучением от лазера, вызывает изменение их внутренних энергий и импульсов и сопровождается излучением фотонов. Интерферометр разделяет это излучение на две пространственно разнесенные когерентные части, которые, проходя разные оптические пути, на экране при наложении друг на друга создают интерференционную картину чередующихся максимумом и минимумов. Расположение минимумов и максимумов на картине зависит от разности фаз падающих пучков света.

Между тем в однородном гравитационном поле атомы при перемещении испытывают фазовый сдвиг. Таким образом, по изменению этих сдвигов и перемещений ученые могут определить локальные изменения в значении ускорения свободного падения, а следовательно, и гравитационной постоянной.

На точность работы интерферометра, кроме внешних факторов, связанных с антропогенной вибрацией, сейсмическими шумами и вращением Земли (которое сказывается на расположении атомов в поперечном направлении), оказывали влияние и факторы, связанные с конструктивными особенностями установки. Прежде всего, это возможные погрешности в определении точного положения массивных источников (по вертикали и горизонтали) и неоднородности их плотности.

Ученые считают, что их работа позволит провести систематический анализ возможных ошибок, встречающихся в экспериментах по определению гравитационной постоянной. Кроме того, проведенный эксперимент открывает новые возможности в измерении гравитационной постоянной с помощью ультрахолодных атомов, заключенных в оптические ловушки. Как уже упоминалось ранее, точное определение значения гравитационной постоянной необходимо для геодезической гравиметрии (измерения силы тяжести в различных областях и на различных высотах Земли), а также для фундаментальных наук: современных космологии, теории гравитации и физики частиц.

Как ни странно это может показаться, но с точным определением гравитационной постоянной у исследователей всегда были проблемы. Авторы статьи говорят о трех сотнях предыдущих попыток сделать это, но все они приводили к значениям, которые не совпадали с другими. Даже в последние десятилетия, когда точность измерений значительно возросла, ситуация оставалась прежней — данные друг с другом, как и раньше, совпадать отказывались.

Основной метод измерения G остался неизменным с 1798 года, когда Генри Кавендиш решил использовать для этого крутильные (или торсионные) весы. Из школьного курса известно, что собой представляла такая установка. В стеклянном колпаке на метровой нити из посеребренной меди висело деревянное коромысло из свинцовых шаров, каждый по 775 г.

Вертикальный разрез установки (Копия рисунка из отчёта Г. Кавендиша «Experiments to determine the Density of the Earth», опубликованного в Трудах Лондонского Королевского Общества за 1798 г. (часть II) том 88 стр.469-526)

Wikimedia Commons

К ним подносили свинцовые шары массой 49,5 кг, и в результате действия гравитационных сил коромысло закручивалось на некий угол, зная который и зная жесткость нити, можно было вычислить величину гравитационной постоянной.

Проблема состояла в том, что, во-первых, гравитационное притяжение очень невелико, плюс на результат могут влиять другие массы, экспериментом не учтенные и от которых не было возможности экранироваться.

Второй минус, как ни странно, сводился к тому, что атомы в подносимых массах находились в постоянном движении, и при малом воздействии гравитации этот эффект тоже сказывался.

Ученые решили добавить к гениальной, но в данном случае недостаточной, идее Кавендиша свой метод и использовали вдобавок другой прибор, квантовый интерферометр, известный в физике под названием СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»; в буквальном переводе с английского squid — «кальмар»; сверхчувствительные магнитометры, используемые для измерения очень слабых магнитных полей ).

Этот прибор отслеживает минимальные отклонения от магнитного поля.

Заморозив лазером 50 кг шара из вольфрама до температур, близких к абсолютному нулю, отследив по изменениям магнитного поля перемещения в этом шаре атомов и, таким образом, исключив их влияние на результат измерения, исследователи получили значение гравитационной постоянной с точностью 150 частей на миллион, то есть 15 тысячных процента. Теперь значение этой постоянной, заявляют ученые, равно 6,67191(99)·10 −11 м 3 ·с −2 ·кг −1 . Предыдущее значение G составляло 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 .

И это довольно странно.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, и пока она все время другая. В 2010 году , в которой американские ученые Гарольд Паркс и Джеймс Фаллер предлагали уточненное значение 6,67234(14)·10 −11 м 3 ·с −2 ·кг −1 . Это значение было получено ими путем регистрации с помощью лазерного интерферометра изменения расстояний между маятниками, подвешенными на струнах, при их колебаниях относительно четырех вольфрамовых цилиндров — источников гравитационного поля — с массами 120 кг каждый. Второе плечо интерферометра, служащее стандартом расстояния, фиксировалось между точками подвеса маятников. Полученная Парксом и Фаллером величина оказалась на три стандартных отклонения меньше величины G , рекомендованной в 2008 году Комитетом данных для науки и техники (CODATA) , но соответствует более раннему значению CODATA, представленному в 1986 году. Тогда сообщалось , что пересмотр величины G, произошедший в период с 1986 по 2008 год был вызван исследованиями неупругости нитей подвесок в крутильных весах.