Меню
Бесплатно
Главная  /  Истории успеха  /  Органеллы спец. назначения

Органеллы спец. назначения

Микроворсинка - вырост эукариотической (обычно животной) клетки, имеющий пальцевидную форму и содержащий внутри цитоскелет из актиновых микрофиламентов. Из микроворсинок состоит воротничок у клеток хоанофлагеллят и у воротничково-жгутиковых клеток губок и других многоклеточных животных. В организме человека микроворсинки имеют клетки эпителия тонкого кишечника, на которых микроворсинки формируют щеточную кайму, а также механорецепторы внутреннего уха - волосковые клетки. За упорядочение актинового цитоскелета микроворсинок отвечают вспомогательные белки, взаимодействующие с актином - фимбрин, спектрин, виллин и др. Микроворсинки также содержат цитоплазматический миозин нескольких разновидностей.

Органоиды: понятие, значение, классификация органоидов по распространенности.

Органоиды: понятие, значение, классификация органоидов по строению.

Органоиды: понятие, значение, классификация органоидов по функции.

Органоиды или органеллы - в цитологии постоянные структуры клеток. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки с органами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Классификация органоидов по распространенности:

Подразделяются на общие , характерные для различных клеток (ЭПС, рибосомы, лизосомы, митохондрии), и специальные (опорные нити тоно-фибрилы эпителиальных клеток), встречающиеся исключительно в клеточных элементах одного вида.

Классификация органоидов по строению:

Подразделяются на мембранные, в основе строения которых лежит биологическая мембрана, и немембранные (рибосомы, клеточный центр, микротрубочки).

Классификация органоидов по функции:

Синтетический аппарат (рибосомы, ЭПС, аппарат Гольджи)

Аппарат внутриклеточного переваривания (лизосома и пероксисома)

Энергетический аппарат (митохондрии)

Аппарат цитоскелета

Органоиды энергопроизводства: понятие, расположение, строение, значение.(см в 30 ответ)

Митохондрии: понятие, расположение в клетке, строение при световой и электронной микроскопии.

Митохондрия - двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм.

Процесс энергообразования в митохондриях может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние - на кристах митохондрий:

1.Превращение поступивших из цитоплазмы в митохондрию пирувата и жирных кислот в ацетил-СоА;

2.Окисление ацетил-СоА в цикле Кребса, ведущее к образованию НАДН;

3.Перенос электронов с НАДН на кислород по дыхательной цепи;

4.Образование АТФ в результате деятельности мембранного АТФ-синтетазного комплекса.

Органоиды внутриклеточного переваривания: понятие, расположение, строение, значение(см в 32 и 33 ответ)

Лизосомы: понятие, строение, расположение, значение.

Лизосома - клеточный органоид размером 0,2 - 0,4 мкм, один из видов везикул. Эти одномембранные органоиды - часть вакуома (эндомембранной системы клетки)

Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

Функциями лизосом являются:

1.переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)

2.аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки

3.автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Пероксисомы: понятие, строение, расположение, значение.

Пероксисома - обязательная органелла эукариотической клетки, ограниченная мембраной, содержащая большое количество ферментов, катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот, уратоксидазы и каталазы). Имеет размер от 0,2 до 1,5 мкм, отделена от цитоплазмы одной мембраной.

Набор функций пероксисом различается в клетках разных типов. Среди них: окисление жирных кислот, фотодыхание, разрушение токсичных соединений, синтез желчных кислот, холестерина, а также эфиросодержащих липидов, построение миелиновой оболочки нервных волокон, метаболизме фитановой кислоты и т. д. Наряду с митохондриями пероксисомы являются главными потребителями O2 в клетке.

Органоиды синтеза: понятие, разновидности, расположение, строение, значение.(см в 35,36 и 37 ответ)

Рибосомы: понятие, строение, разновидности, значение.

Рибосома - важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

Эндоплазматическая сеть: понятие, строение, разновидности, значение.

Эндоплазматический ретикулум (ЭПР) или эндоплазматическая сеть (ЭПС) - внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

Выделяют два вида ЭПС:

Гранулярный эндоплазматический ретикулум;

Агранулярный (гладкий) эндоплазматический ретикулум.

Аппарат Гольджи: понятие, строение при световой и электронной миткроскопии, расположение.

Аппарат Гольджи (комплекс Гольджи) - мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.

Органоиды цитоскелета: понятие, разновидности, строение, значение.

Цитоскелет - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.Цитоскелет образован белками.

В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

1. Гликокаликс 2. Микроворсинки 3. Межклеточный контакт в виде «замка» 4. Десмосома 5. Плотный контакт

Микроворсинки являются неотъемлемой частью эпителиоцитов тонкого и толстого

кишечника, канальцев почки. В этих органах микроворсинки обеспечивают всасывание

необходимых веществ. Количество микроворсинок (2) в одной клетке может достигать 3000. Большое количество микроворсинок в клетке создает между ними узкие щели. В этих

пространствах действуют капиллярные силы, способствующие присасыванию жидкости. В тонком кишечнике на микроворсинках поверхностного эпителия в гликокаликсе (1) и в плазмолемме сконцентрированы ферменты, обеспечивающие пристеночное пищеварение и всасывание веществ.

В почках микроворсинки всасывают воду и электролиты, в дальнейшем последние переходят в кровь. При некоторых патологических состояниях микроворсинки отделяются от клетки и закрывают просвет почечного канальца (синдром белковых цилиндров)

Назовите структуры, обозначенные цифрами, объясните функции этих структур.

Специальные структуры поверхности клетки: микрореснички в эпителиоцитах

1. Микроресничка 2. Аксонема 3. Базальное тельце 4. Десмосома 5.Базальная мембрана



6. Плазмолемма

Микрореснички относят к специализированным органоидам клетки. Они всегда

присутствуют в эпителии воздухоносных путей, в яйцеводе и обладают подвижностью.

Микроресничка – вырост клетки диаметром 300 нм. Снаружи её покрывает плазмолемма (6), а внутри находится аксонема (2), которая состоит из комплексов микротрубочек. Микротрубочки собраны в комплексы в виде дуплетов: по 9 пар на периферии и одна пара в центре. Микрореснички построены из белка тубулина, который не способен к сокращению. Движение микроресничек обеспечивает белок динеин, который локализован в «ручках» дуплетов микротрубочек.

Аксонема (2) связана с базальным тельцем (3), которое состоит из триплетов микротрубочек без центрального дуплета.

Развитие микроресничек связано с формированием клеточного центра. В этот период происходит многократная редупликация центриолей. Новые центриоли парами мигрируют к апикальной поверхности клетки. Здесь они модифицируются в микрореснички.

Дайте название процессу и его фазам. Опишите изменения, происходящие на каждой из приведенных схем.

Митоз.

1. Клетка в интерфазе 2. Профаза. Хромосомы спирализуются. Распадается оболочка ядра. Центриоли расходятся к полюсам клетки 3. Ранняя анафаза. Наступает после метафазы. При этом хромосомы перемещаются к полюсам со скоростью 0,2-5,0 мкм в мин. 4. Телофаза. Происходит организация ядер в дочерних клетках.

В предмитотической фазе (1) в клетке удваивается число хромосом.

На приведенных схемах 2,3,4 приведены основные фазы митоза. В профазе прекращается транскрипция. Затем начинается спирализация хромосом. К концу профазы видны хромосомы, каждая из которых состоит из двух хроматид. Хроматиды сплетены и не видны отдельно. Характерной чертой профазы является формирование веретена деления. К каждому полюсу отходят по две центриоли и от них образуются микротрубочки. Формирование микротрубочек обеспечивает полимеризация белков тубулинов. С микротрубочками связываются хромосомы.

Метафаза занимает 20-30 минут. В этот период завершено образование веретена деления и хромосомы занимают экваториальную плоскость. К концу метафазы сестринские хроматиды разделяются.

В анафазе (2) сестринские хроматиды становятся самостоятельными хромосомами и расходятся к полюсам. Телофазу разделяют на раннюю и позднюю (3,4). Ранняя телофаза – это завершение расхождения хромосом. В поздней телофазе начинается формирование новых ядер, обособление генетического материала (3). Завершается поздняя телефаза разделением исходной клетки на две дочерние (цитокинез или цитотомия).

Хромосомы начинают транскрибировать РНК. К концу телофазы ядрышко полностью сформировано.

Микроворсинки нередко путают с ресничками , однако они резко отличаются по строению и функциям. Реснички имеют базальное тело и цитоскелет из микротрубочек , способны к быстрым движениям (кроме видоизмененных неподвижных ресничек) и служат у крупных многоклеточных обычно для создания токов жидкости или восприятия раздражителей, а у одноклеточных и мелких многоклеточных животных также для передвижения. Микроворсинки не содержат микротрубочек и способны лишь к медленным изгибаниям (в кишечнике) либо неподвижны.

За упорядочение актинового цитоскелета микроворсинок отвечают вспомогательные белки, взаимодействующие с актином - фимбрин, спектрин , виллин и др. Микроворсинки также содержат цитоплазматический миозин нескольких разновидностей.

Микроворсинки кишечника (не путать с многоклеточными ворсинками) во много раз увеличивают площадь поверхности всасывания. Кроме того. у позвоночных на их плазмалемме закреплены пищеварительные ферменты , обеспечивающие пристеночное пищеварение.

Микроворсинки внутреннего уха (стереоцилии) интересны тем, что образуют ряды с различной, но строго определенной в каждом ряду длиной. Вершины микроворсинок более короткого ряда соединены с более длинными микроворсинками соседнего ряда с помощью белков - протокадгеринов. Их отсутствие или разрушение может приводить к глухоте, так как они необходимы для открывания натриевых каналов на мембране волосковых клеток и, следовательно, для преобразования механической энергии звука в нервный импульс

Хотя микроворсинки сохраняются на волосковых клетках в течение всей жизни, каждая из них постоянно обновляется за счет тредмиллинга актиновых филаментов,

Ссылки

Атлас электронных микрофотографий (ПЭМ)

Врожденный слуховой аппарат на флексоэлектричестве


Wikimedia Foundation . 2010 .

И у воротничково-жгутиковых клеток губок и других многоклеточных животных. В организме человека микроворсинки имеют клетки эпителия тонкого кишечника, на которых микроворсинки формируют щеточную кайму , а также механорецепторы внутреннего уха - волосковые клетки .

Микроворсинки нередко путают с ресничками , однако они резко отличаются по строению и функциям. Реснички имеют базальное тело и цитоскелет из микротрубочек , способны к быстрым движениям (кроме видоизмененных неподвижных ресничек) и служат у крупных многоклеточных обычно для создания токов жидкости или восприятия раздражителей, а у одноклеточных и мелких многоклеточных животных также для передвижения. Микроворсинки не содержат микротрубочек и способны лишь к медленным изгибаниям (в кишечнике) либо неподвижны.

За упорядочение актинового цитоскелета микроворсинок отвечают вспомогательные белки, взаимодействующие с актином - фимбрин , спектрин , виллин и др. Микроворсинки также содержат цитоплазматический миозин нескольких разновидностей.

Микроворсинки кишечника (не путать с многоклеточными ворсинками) во много раз увеличивают площадь поверхности всасывания. Кроме того, у позвоночных на их плазмалемме закреплены пищеварительные ферменты , обеспечивающие пристеночное пищеварение .

Микроворсинки внутреннего уха (стереоцилии) интересны тем, что образуют ряды с различной, но строго определенной в каждом ряду длиной. Вершины микроворсинок более короткого ряда соединены с более длинными микроворсинками соседнего ряда с помощью белков - протокадгеринов. Их отсутствие или разрушение может приводить к глухоте, так как они необходимы для открывания натриевых каналов на мембране волосковых клеток и, следовательно, для преобразования механической энергии звука в нервный импульс .

Хотя микроворсинки сохраняются на волосковых клетках в течение всей жизни, каждая из них постоянно обновляется за счёт тредмиллинга актиновых филаментов.

Напишите отзыв о статье "Микроворсинка"

Ссылки

Примечания

Отрывок, характеризующий Микроворсинка

Было уже поздно вечером, когда они взошли в Ольмюцкий дворец, занимаемый императорами и их приближенными.
В этот самый день был военный совет, на котором участвовали все члены гофкригсрата и оба императора. На совете, в противность мнения стариков – Кутузова и князя Шварцернберга, было решено немедленно наступать и дать генеральное сражение Бонапарту. Военный совет только что кончился, когда князь Андрей, сопутствуемый Борисом, пришел во дворец отыскивать князя Долгорукова. Еще все лица главной квартиры находились под обаянием сегодняшнего, победоносного для партии молодых, военного совета. Голоса медлителей, советовавших ожидать еще чего то не наступая, так единодушно были заглушены и доводы их опровергнуты несомненными доказательствами выгод наступления, что то, о чем толковалось в совете, будущее сражение и, без сомнения, победа, казались уже не будущим, а прошедшим. Все выгоды были на нашей стороне. Огромные силы, без сомнения, превосходившие силы Наполеона, были стянуты в одно место; войска были одушевлены присутствием императоров и рвались в дело; стратегический пункт, на котором приходилось действовать, был до малейших подробностей известен австрийскому генералу Вейротеру, руководившему войска (как бы счастливая случайность сделала то, что австрийские войска в прошлом году были на маневрах именно на тех полях, на которых теперь предстояло сразиться с французом); до малейших подробностей была известна и передана на картах предлежащая местность, и Бонапарте, видимо, ослабленный, ничего не предпринимал.
Долгоруков, один из самых горячих сторонников наступления, только что вернулся из совета, усталый, измученный, но оживленный и гордый одержанной победой. Князь Андрей представил покровительствуемого им офицера, но князь Долгоруков, учтиво и крепко пожав ему руку, ничего не сказал Борису и, очевидно не в силах удержаться от высказывания тех мыслей, которые сильнее всего занимали его в эту минуту, по французски обратился к князю Андрею.
– Ну, мой милый, какое мы выдержали сражение! Дай Бог только, чтобы то, которое будет следствием его, было бы столь же победоносно. Однако, мой милый, – говорил он отрывочно и оживленно, – я должен признать свою вину перед австрийцами и в особенности перед Вейротером. Что за точность, что за подробность, что за знание местности, что за предвидение всех возможностей, всех условий, всех малейших подробностей! Нет, мой милый, выгодней тех условий, в которых мы находимся, нельзя ничего нарочно выдумать. Соединение австрийской отчетливости с русской храбростию – чего ж вы хотите еще?
– Так наступление окончательно решено? – сказал Болконский.

Специализированные органеллы и структуры встречаются не во всех клетках.

Они характерны для зрелых клеток, являются признаками направления их дифференцировки и обеспечивают в них специфические функции. Примерами таких органелл являются микроворсинки, реснички, жгутики, миофибриллы, тонофибриллы, нейрофибриллы и некоторые другие органеллы.

Микроворсинки . Это структуры клетки, располагающиеся на ее внешней поверхности и выступающие во внеклеточное пространство. При световой микроскопии микроворсинки видны как тонкие выросты клетки. Если их много, то они формируют апикальную каемку на свободной поверхности. Эти выпячивания значительно расширяют площадь взаимодействия клетки с внешней средой.

Ферменты, прикрепленные к гликокаликсу и находящиеся в толще билипидного слоя мембраны микроворсинок, обеспечивают всасывание и/или переваривание веществ на поверхности клеток. В этом случае расширение контактной поверхности резко увеличивает эффективность подобных процессов, например комплекс микроворсинок в столбчатых эпителиоцитах тонкой кишки. В них микроворсинки тесно соприкасаются друг с другом, обильно покрывают внешнюю поверхность клетки. Толщина микроворсинок около 100 нм, а число и длина различны. Так, длина микроворсинок у столбчатых (призматических) клеток кишечника достигает 0,6…0,8 мкм.

Во многих клетках величина и размеры микроворсинок не постоянны. Так, в тироцигах щитовидной железы в период покоя они редкие и короткие, а при интенсивной нагрузке их высота и количество значительно увеличиваются.

Микроворсинки состоят из клеточной мембраны, гиалоплазмы и тонких микрофиламентов. Актиновые (тонкие) микрофиламенты располагаются параллельно поверхности мембраны в виде компактно упакованных, упорядоченных пучков. Внутри каждой микроворсинки располагается около 20…30 актиновых нитей. Положительный полюс микрофиламентов направлен к периферии и стыкуется с электронно-плотным аморфным веществом дистальной части (верхушкой), а в основании микроворсинки актиновые микрофиламенты вплетаются в сеть подобных им структур, формирующих кутикулу.

Тонкие микрофиламенты в микроворсинке лежат параллельно друг другу на расстоянии около 10 нм, регулярно соединяясь между собой с помощью белков - фимбрина и фасцина. Эти белковые комплексы образуют поперечные сцепления и объединяют тонкие микрофиламенты в компактные пучки. С мембранами тонкие микрофиламенты взаимодействуют с помощью минимиозина и виллина. Взаимодействие с минимиозинами позволяет микроворсинке сокращаться (уменьшать или увеличивать высоту).

Сходное строение с микроворсинками имеют стереоцилии. Они крупнее микроворсинок и не обладают всасывающей способностью.

Реснички и жгутики . Они представляют собой выпячивания цитоплазмы, окруженные клеточной мембраной, способные к активному движению. Органеллы хорошо заметны при большом увеличении микроскопа. Реснички и жгутики на ультраструктурном уровне имеют сходные принципы строения, но могут иметь разные функции. Реснички перемещают поверхностный субстрат полого органа, тогда как жгутик спермия позволяет передвигаться самой клетке.

В многоклеточных организмах животных строение ресничек и жгутиков резко отличается от подобных органелл прокариот. Жгутики у бактерий образованы белком флагеллином, не имеющим отношения к комплексам микротрубочек у эукариот.

Реснички у эукариот - это специальные органеллы движения, встречающиеся лишь в некоторых клетках. Реснички находятся в однослойном эпителии органов дыхания и женских половых путей. В реснитчатом эпигелиоците дыхательных путей можно найти около 50…60 ресничек.

Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с постоянным диаметром 300 нм, покрытый плазматической мембраной.

В основании ресничек и жгутика в цитоплазме видны хорошо окрашивающиеся мелкие гранулы - базальные тельца. В этой области над клеткой выступает выпячивание - аксонема. Аксонема («осевая нить») - сложная структура, состоящая из микротрубочек и выступающая в просвет или полость органа, выстланного реснитчатым эпителием. Проксимальная часть реснички (базальное тело) погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковые.

Базальное тельце по строению аналогично центриоли и состоит из девяти триплетов микротрубочек, между которыми расположены ручки, втулки и спицы. К базальному тельцу могут прикрепляться спутники, от которых отходят микротрубочки. Таким образом, базальное тельце, наряду с центросомой, является центром организации микротрубочек и может выполнять аналогичные функции.

Аксонема по составу опорного аппарата отличается от базального тельца. Стенку цилиндра аксонемы образуют 9 дуплетов микротрубочек. Кроме периферических дуплетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. Эти микротрубочки лежат отдельно на расстоянии примерно 25 нм. В целом систему микротрубочек реснички описывают как (9 х 2 + 2) в отличие от (9 х 3 + 0) системы центриолей и базальных телец.

Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое. Каждая из двух первых микротрубочек девяти триплетов базального тельца является основой для дуплетов микротрубочек цитоплазматического выроста, таким образом, две микротрубочки триплетов базального тельца являются микротрубочками дуплетов аксонемы. Они полимеризуются от базального тельца на основании реснички.

Из дуплета а-микротрубочка полная и образована 13 тубулинами. Неполная b-микротрубочка составлена 11 тубулинами, так как две глобулы белка являются общими с а-микротрубочками. Центральные микротрубочки формируются от центральной втулки базального тельца. Все микротрубочки достигают своим дистальным отрицательным полюсом гомогенный матрикс аксонемы.

Соседние дуплеты соединены между собой «ручками», образованными белками динеинами. Динеины обладают АТФазной активностью, способны изменять свою стереологическую структуру. В присутствии ионов кальция динеины сокращаются с потреблением энергии. Это позволяет микротрубочкам скользить относительно друг друга. Кроме динеина в составе ресничек выделяют нидоген.

К центральным микротрубочкам от периферических дуплетов радиально направляются спицы. Центральные же микротрубочки объединены втулкой.

Свободные клетки, имеющие реснички и жгутики, способны передвигаться, а неподвижные клетки движением ресничек могут перемещать жидкость и различные частицы в полых органах. При движении ресничек и жгутиков длина их не уменьшается, поэтому неправильно называть это движение сокращением. Траектория движения ресничек очень разнообразна: маятникообразная, крючкообразная или волнообразная.

Основной белок ресничек - тубулин не способен к сокращению, укорочению, поэтому движение ресничек осуществляется за счет активности белка динеина. Незначительные смещения дуплетов микротрубочек относительно друг друга вызывают изгиб всей реснички, а если такое локальное смещение происходит вдоль жгутика, то возникает волнообразное движение.

Волнообразное движение жгутика спермия позволяет ему передвигаться с очень высокой скоростью - до 5 мм в минуту.

Волнообразное перемещение ресничек мерцательного эпителия происходит строго согласованно, но скорость движения в разных направлениях отличается. Обычно в какую-то одну сторону реснички сокращаются с большой скоростью, а в противоположном направлении их положение изменяется плавно. Это обеспечивает ток жидкости в сторону быстрого сокращения ресничек. Дефекты ресничек могут приводить к различным нарушениям, например к наследственному рецидивирующему бронхиту и хроническому синуситу, возникающим в результате нарушений функции ресничного эпителия.

Движения ресничек и жгутиков зависят от содержания внутриклеточного кальция, АТФ, ионного состава межклеточного вещества, обеспечения кислородом, глюкозой и др.

Гормоны и биологически активные вещества регулируют движения ресничек и жгутиков. Влияние того или иного гормонального фактора зависит от специализации клетки и ее рецепторного аппарата.

Реснички образуются за счет центриолей. От материнской центриоли синтезируется дочерняя центриоль, но процесс этот не заканчивается на дуплете органелл, а вновь синтезированная органелла смещается на периферию (в субмембранное пространство). Процесс может повторяться многократно. В результате под мембраной образуется множество базальных телец, которые служат основой для образования ресничек.

Базальные инвагинации (впячивания) . Это внедрения цитолеммы в цитоплазму, прилежащие к базальной мембране или иной плотной структуре. Чаще всего базальные впячивания встречаются в эпителии в базальной части клетки. В других тканях они встречаются гораздо реже, например впячивание цитолеммы на остеокласте со стороны разрушаемой (резорбцируемой) кости, так называемая гофрированная каемка. Базальные инвагинации существенно увеличивают внутреннюю (базальную) поверхность клетки.

Нередко в зонах инвагинации цитолеммы видны многочисленные митохондрии. Совокупность базальных инвагинаций и митохондрий формирует базальную исчерченность, которая хорошо заметна при большом увеличении микроскопа в дистальных и проксимальных канальцах нефронов почек. Базальная исчерченность в эпителиоцитах канальцев - это признак активных процессов трансмембранного переноса веществ; наряду с увеличением поверхности присутствует высокий уровень энергетического потребления, обеспечиваемый АТФ.

Базальные впячивания формируют сложный лабиринт каналов и ходов, взаимных переплетений. На поверхности клеточной мембраны обнаруживают много ионных каналов, рецепторов, значительную ферментативную активность.

Форму базальных впячиваний поддерживают структуры цитоскелета: промежуточные филаменты и тонкие микрофиламенты. Они соединяются с внутренней поверхностью мембраны с помощью интегральных мембранных белков, которые, в свою очередь, сцеплены друг с другом через гликокаликс. Состав промежуточных филаментов разнообразен и зависит от тканевой принадлежности клетки: в эпителии - это цитокератины, которые формируют микрофибриллы (гонофибриллы).

Миофибрилла . Это специализированная органелла мышечной ткани, основная функция которой - сокращение. При световой микроскопии миофибриллы заметны в скелетной и сердечной мышечной тканях, где они имеют вид мощных пучков волокон, расположенных строго упорядоченно и придающих симпластам или клеткам продольную и поперечную исчерченность.

Миофибрилла представляет собой систему взаимодействующих друг с другом тонких и толстых микрофиламентов (миофиламентов). Отдельные миофиламенты можно рассмотреть лишь при электронной микроскопии, но каждая миофибрилла (особенно в поперечнополосатых мышечных тканях) состоит из сотен таких нитей. Распределение миофиламентов может быть строго упорядочено в продольном направлении и придавать структуре поперечную и продольную исчерченность либо распределяться в виде сети (в гладких мышечных клетках). В последнем случае миофиламенты при световой микроскопии выявить не удается.

Сокращение в миофибрилле обеспечивается взаимодействием белков, образующих миофиламенты. Сокращение - это энергоемкий процесс, зависящий от внутриклеточного содержания ионов кальция. Сокращение может быть вызвано прямым нервным либо гуморальным влиянием. Любое из специфических возбуждений сопровождается деполяризацией мембраны с увеличением внутриклеточного содержания ионов кальция, что активизирует взаимодействие актина с миозином.

Рассмотрим строение миофибриллы на примере скелетного мышечного волокна (симпласта). В скелетном мышечном волокне миофибрилла продолжается на всю длину симпласта. Миофибриллы поперечнополосатых мышечных тканей имеют поперечную исчерченность, которая формируется при чередовании светлых (изотропных, I-дисков) и темных (анизотропных, A-дисков) дисков.

Анизотропные диски в поляризованном свете обеспечивают двойное лучепреломление, а изотропные такой способностью не обладают. Светлые диски при световой микроскопии имеют вид слабо окрашенных полос. На электронной микрофотографии видно, что светлые диски не содержат толстых нитей (миофиламентов). При очень большом увеличении светового микроскопа иногда в центре светлого I-диска заметна темная линия - телофрагма, или Z-линия (зона соединения между собой тонких нитей).

Темные диски при электронной микроскопии видны как зона параллельно лежащих толстых миофиламентов. Значительная часть темного диска содержит как толстые, так и тонкие миофиламенты. При световой и электронной микроскопиях эти участки просматриваются как наиболее темные. В центре темного А-диска под очень большим увеличением светового микроскопа иногда можно увидеть мезофрагму, или М-линию - область соединения толстых нитей. Она видна как тончайшая темная поперечная полоска. Участок A-диска, в котором отсутствуют тонкие нити, называется Н-зоной. В отличие от темного диска в целом Н-зона несколько светлее окрашена.

Соотношение длин анизотропного и изотропного дисков величина непостоянная и зависит от степени сокращения или расслабления. Так, в момент максимального сокращения длина изотропного диска минимальна, а Н-зона отсутствует. При расслаблении длина изотропного диска и Н-зоны максимальна. Размеры анизотропного диска при этом остаются относительно постоянными.

Толстые нити (миофиламенты) имеют поперечный диаметр около 10…12 нм, они образованы сложно устроенными белками - миозинами. Каждая молекула миозина содержит две тяжелые и две легкие цепи полипептидов меромиозинов, то есть миозин - это тетрамер. Он состоит из тела (хвоста), шейки и головки. Шейка и тело сформированы из двух взаимно переплетающихся полипептидных цепочек тяжелых цепей меромиозинов. Головка раздвоена и к ней присоединяются две легкие цепи меромиозина. Легкий меромиозин (миозин) способен разрушать АТФ, то есть обладает АТФазной активностью. Между шейкой и головкой миозина есть «шарнирное» соединение - место, легко изменяющее свою пространственную ориентацию или изгибающееся подобно суставу. Это происходит в момент взаимодействия головки с белками тонкого миофиламенга - актинами.

Тонкий миофиламент по строению близок к тонким микрофиламентам и состоит из двойной цепочки актинов. Они спирально закручены. В отличие от обычных актиновых нитей тонкие миофиламенты достаточно стабильные структуры и не подвергаются постоянному распаду и полимеризации. Эта устойчивость объясняется присоединением к актиновым цепочкам их стабилизирующего белка - тропомиозина (фибриллярного белка).

Кроме него в тонком миофиламенте имеются и другие белки - тропонины, составляющие комплекс из трех глобул. Эти глобулы представлены С-, I- и Т-тропонинами. С-тропонин связывается с ионами кальция, I-тропонин препятствует взаимодействию актина с головкой миозина, а Т-тропонин присоединяется к тропомиозину. В покое актины связаны с тропомиозином и тропонинами так, что актин блокирован и не может взаимодействовать с миозином.

При возбуждении мышечной клетки в матриксе цитоплазмы резко увеличивается содержание ионов кальция. Они соединяются с С-тропонином, к которому имеют высокую степень сродства. Это изменяет форму тропонинового комплекса, что сопровождается перестройкой пространственной конфигурации тропомиозина и изменением формы актиновой нити в целом. В результате молекулы актина могут взаимодействовать с головками миозина. Миозиновые головки соединяются с ближайшими актинами, но при этом происходит сокращение миозинов в зонах шарнирных соединений. В результате толстая нить слегка продвигается вперед в направлении центральной части изотропного диска.

Следующим шагом является разрушение АТФ легкими цепями меромиозина. Этой энергии хватает, чтобы разорвать связь миозина с актином. Шарнирное соединение «выпрямляется», то есть занимает исходное положение, но оказавшаяся чуть впереди головка вновь связывается с последующими молекулами актина. Вновь происходит сокращение и движение вперед. Таким образом, миозиновые головки как бы «шагают» по актиновым нитям за счет шарнирного соединения и АТФазной активности миозина.

При прекращении возбуждения в мышечном волокне содержание ионов кальция вновь снижается, С-тропонин высвобождается, это приводит к тому, что актиновый (тонкий) миофиламент вновь восстанавливает свою прежнюю структуру, и актин «закрывается» тропомиозином. В этой ситуации взаимодействие миозина с актином становится вновь невозможным, и миофибрилла занимает исходное положение - происходит расслабление мышечного волокна.

Распределение миофибрилл в скелетной мышце отличается от сердечной. В кардиомиоцитах миофибриллы занимают в основном периферию клетки, тогда как в скелетном симпласте они располагаются центрально. В гладком миоците толстых миофиламентов фактически нет, и тонкие миофиламенты взаимодействуют с молекулами минимиозина.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .