Меню
Бесплатно
Главная  /  Наши дети  /  Примеры написания продуктов химических реакций уравнять. Как составить химическое уравнение: правила, примеры

Примеры написания продуктов химических реакций уравнять. Как составить химическое уравнение: правила, примеры

Часть I

1. Закон Ломоносова-Лавуазье – закон сохранения массы веществ:

2. Уравнения химической реакции – это условная запись химической реакции с помощью химических формул и математических знаков.

3. Химическое уравнение должно соответствовать закону сохранения массы веществ, что достигается расстановкой коэффициентов в уравнении реакции.

4. Что показывает химическое уравнение?
1) Какие вещества вступают в реакцию.
2) Какие вещества образуются в результате.
3) Количественные отношения веществ в реакции, т. е. количества реагирующих и образующихся веществ в реакции.
4) Тип химической реакции.

5. Правила расстановки коэффициентов в схеме химической реакции на примере взаимодействия гидроксида бария и фосфорной кислоты с образованием фосфата бария и воды.
а) Запишите схему реакции, т. е. формулы реагирующих и образующихся веществ:

б) начинайте уравнивать схему реакции с формулы соли (если она имеется). При этом помните, что несколько сложных ионов в составе основания или соли обозначаются скобками, а их число – индексами за скобками:

в) водород уравняйте в предпоследнюю очередь:

г) кислород уравняйте последним – это индикатор верной расстановки коэффициентов.
Перед формулой простого вещества возможна запись дробного коэффициента, после чего уравнение необходимо переписать с удвоенными коэффициентами.

Часть II

1. Составьте уравнения реакций, схемы которых:

2. Напишите уравнения химических реакций:

3. Установите соответствие между схемой и суммой коэффициентов в химической реакции.

4. Установите соответствие между исходными веществами и продуктами реакции.

5. Что показывает уравнение следующей химической реакции:

1) Вступили в реакцию гидроксид меди и соляная кислота;
2) Образовались в результате реакции соль и вода;
3) Коэффициенты перед исходными веществами 1 и 2.

6. С помощью следующей схемы составьте уравнение химической реакции, используя удвоение дробного коэффициента:

7. Уравнение химической реакции:
4P+5O2=2P2O5
показывает количество вещества исходных веществ и продуктов, их массу или объём:
1) фосфора – 4 моль или 124 г;
2) оксида фосфора (V) – 2 моль, 284 г;
3) кислорода – 5 моль или 160 л.

Химическое уравнение представляет собой запись реакции с помощью символов элементов и формул соединений, принимающих в ней участие. Относительные количества реагентов и продуктов, выраженные в молях, указываются численными коэффициентами в полном (сбалансированном) уравнении реакции. Эти коэффициенты иногда называют стехиометрическими коэффициентами. В настоящее время наблюдается все возрастающая тенденция включать в химические уравнения указания физического состояния реагентов и продуктов. Это делается с помощью следующих обозначений: (газ) или означает газообразное состояние, (-жидкость, ) - твердое вещество, (-водный раствор.

Химическое уравнение может быть составлено на основе экспериментально установленного знания реагентов и продуктов изучаемой реакции, а также путем измерения относительных количеств каждого реагента и продукта, которые принимают участие в реакции.

Составление химического уравнения

Составление полного химического уравнения включает следующие четыре стадии.

1-я стадия. Запись реакции в словесном выражении. Например,

2-я стадия. Замена словесных названий формулами реагентов и продуктов.

3-я стадия. Балансировка уравнения (определение его коэффициентов)

Такое уравнение называется сбалансированным или стехиометрическим. Необходимость сбалансировать уравнение диктуется тем, что в любой реакции должен выполняться закон сохранения материи. Применительно к реакции, рассматриваемой нами в качестве примера, это означает, что в ней не может ни образоваться, ни исчезнуть ни один атом магния, углерода или кислорода. Другими словами, число атомов каждого элемента в левой и правой частях химического уравнения должно быть одинаково.

4-я стадия. Указание физического состояния каждого участника реакции.

Типы химических уравнений

Рассмотрим следующее полное уравнение:

Это уравнение описывает всю реакционную систему в целом. Однако рассматриваемую реакцию можно также представить в упрощенном виде при помощи ионного уравнения-.

Это уравнение не включает сведений о сульфат-ионах которые не указаны в нем потому, что они не принимают участия в рассматриваемой реакции. Такие ионы называют ионами-наблюдателями.

Реакция между железом и медью (II) является примером окислительно-восстановительных реакций (см. гл. 10). Ее можно условно разделить на две реакции, одна из которых описывает восстановление, а другая - окисление, протекающие одновременно в общей реакции:

Эти два уравнения называются уравнениями полуреакций. Они особенно часто используются в электрохимии для описания процессов, протекающих на электродах (см. гл. 10).

Интерпретация химических уравнений

Рассмотрим следующее простое стехиометрическое уравнение:

Его можно интерпретировать двумя способами. Во-первых, согласно этому уравнению, один моль молекул водорода реагирует с одним молем молекул брома образуя два моля молекул бромоводорода Такое истолкование химического уравнения иногда называют его молярной интерпретацией.

Однако можно истолковать данное уравнение и так, что в результирующей реакции (см. ниже) одна молекула водорода реагирует с одной молекулой брома образуя две молекулы бромоводорода Подобное истолкование химического уравнения иногда называют его молекулярной интерпретацией.

И молярная, и молекулярная интерпретации одинаково правомочны. Однако было бы совершенно неправильно заключить на основании уравнения рассматриваемой реакции, что одна молекула водорода сталкивается с одной молекулой брома образуя две молекулы бромоводорода Дело в том, что данная реакция, как и большинство других, осуществляется в несколько последовательных стадий. Совокупность всех этих стадий принято называть механизмом реакции (см. гл. 9). В рассматриваемом нами примере реакция включает следующие стадии:

Таким образом, рассматриваемая реакция в действительности представляет собой цепную реакцию, в которой участвуют интермедиаты (промежуточные реагенты), называемые радикалами (см. гл. 9). Механизм рассматриваемой реакции включает еще и другие стадии и побочные реакции. Таким образом, стехиометрическое уравнение указывает только результирующую реакцию. Оно не дает сведений о механизме реакции.

Вычисления с помощью химических уравнений

Химические уравнения являются отправной точкой для самых разнообразных химических расчетов. Здесь и далее в книге дан ряд примеров подобных расчетов.

Вычисление массы реагентов и продуктов. Мы уже знаем, что сбалансированное химическое уравнение указывает относительные молярные количества реагентов и продуктов, участвующих в реакции. Эти количественные данные позволяют вычислять массы реагентов и продуктов.

Вычислим массу хлорида серебра, образующегося при добавлении избыточного количества раствора хлорида натрия к раствору, в котором содержится 0,1 моль серебра в форме ионов

Первой стадией всех подобных расчетов является запись уравнения рассматриваемой реакции: I

Поскольку в реакции используется избыточное количество хлорид-ионов, можно предположить, что все имеющиеся в растворе ионы превращаются в Уравнение реакции показывает, что из одного моля ионов получается один моль Это позволяет вычислить массу образующегося следующим образом:

Следовательно,

Поскольку г/моль, то

Определение концентрации растворов. Вычисления, основанные на стехиометрических уравнениях, лежат в основе количественного химического анализа. В качестве примера рассмотрим определение концентрации раствора по известной массе продукта, образующегося в реакции. Такая разновидность количественного химического анализа называется гравиметрическим анализом.

К раствору нитрата добавлено такое количество раствора иодида калия, которого достаточно, чтобы осадить весь свинец в форме иодида Масса образовавшегося иодида составила 2,305 г. Объем исходного раствора нитрата был равен Требуется определить концентрацию исходного раствора нитрата

Мы уже сталкивались с уравнением рассматриваемой реакции:

Это уравнение показывает, что для получения одного моля иодида необходим один моль нитрата свинца (II). Определим молярное количество образовавшегося в реакции иодида свинца (II). Поскольку

Для того, чтобы научится уравнивать химические уравнения, сначала нужно выделять главные моменты и использовать правильный алгоритм.

Ключевые моменты

Выстроить логику процесса несложно. Для этого выделим следующие этапы:

  1. Определение типа реагентов (все реагенты органические, все реагенты неорганические, органические и неорганические реагенты в одной реакции)
  2. Определение типа химической реакции (реакция с изменением степеней окисления компонентов или нет)
  3. Выделение проверочного атома или группы атомов

Примеры

  1. Все компоненты неорганические, без изменения степени окисления, проверочным атомом будет кислород – О (его не затронули никакие взаимодействия:

NaОН + НCl = NaCl + H2O

Посчитаем количество атомов каждого элементов правой и левой части и убедимся, что здесь не требуется расстановка коэффициентов (по умолчанию отсутствие коэффициента – это коэффициент равный 1)

NaOH + H2SO4 = Na2 SO4 + H2O

В данном случае, в правой части уравнения мы видим 2 атома натрия, значит в левой части уравнения нам нужно подставить коэффициент 2 перед соединением, содержащим натрий:

2 NaOH + H2SO4 = Na2 SO4 + H2O

Проверяем по кислороду - О: в левой части 2О из NaОН и 4 из сульфат иона SO4, а в правой 4 из SO4 и 1 в воде. Добавляем 2 перед водой:

2 NaOH + H2SO4 = Na2 SO4 +2 H2O

  1. Все компоненты органические, без изменения степени окисления:

НООС-СOOH + CH3OH = CH3OOC-COOCH3 + H2O (реакция возможна при определенных условиях)

В данном случае мы видим, что в правой части 2 группы атомов CH3, а в левой только одна. Добавляем в левую часть коэффициент 2 перед CH3OH, проверяем по кислороду и добавляем 2 перед водой

НООС-СOOH + 2CH3OH = CH3OOC-COOCH3 + 2H2O

  1. Органический и неорганические компоненты без изменения степеней окисления:

CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

В данной реакции проверочный атом необязателен. В левой части 1 молекула метиламина CH3NH2, а в правой 2. Значит нужен коэффициент 2 перед метиламином.

2CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

  1. Органический компонент, неорганический, изменение степени окисления.

СuO + C2H5OH = Cu + CH3COOH + Н2O

В данном случае необходимо составить электронный баланс, а формулы органических веществ лучше преобразовать в брутто. Проверочным атомом будет кислород – по его количеству видно, что коэффициенты не требуются, электронный баланс подтверждает

CuO + C2H6O = Cu + C2H4O2

2С +2 - 2е = 2С0

C3H8 + O2 = CO2 + H2O

Здесь O не может быть проверочным, так как сам меняет степень окисления. Проверяем по Н.

О2 0 + 2*2 е = 2O-2 (речь идет о кислороде из CO2)

3С (-8/3) - 20е = 3С +4 (в органических окислительно-восстановительных реакциях используют условные дробные степени окисления)

Из электронного баланса видно, что для окисления углерода требуется в 5 раз больше кислорода. Ставим 5 перед O2, также из электронного баланса м должны поставить 3 перед С из СО2, проверим по Н, и поставим 4 перед водой

C3H8 + 5O2 = 3CO2 + 4H2O

  1. Неорганические соединения, изменение степеней окисления.

Na2SO3 + KMnO4 + H2SO4 = Na2SO4 + K2SO4 + Н2О + MnO2

Проверочными будут водороды в воде и кислотные остатки SO4 2- из серной кислоты.

S+4 (из SO3 2-) – 2e = S +6(из Na2SO4)

Mn+7 + 3e = Mn+4

Таким образом нужно поставить 3 перед Na2SO3 и Na2SO4, 2 перед КМnO4 и MNO2.

3Na2SO3 + 2KMnO4 + H2SO4 = 3Na2SO4 + K2SO4 + Н2О +2MnO2

Химические реакции это химические взаимодействия веществ. Изображение реакций при помощи химических формул и математических знаков называется химическим уравнением.

При химических реакциях из атомов вступивших в реакцию веществ образуются новые вещества, и число атомов каждого элемента до реакции равно числу атомов этих элементов после реакции, т.е. в левой и в правой частях уравнения число атомов всех элементов должно быть одинаковым − закон сохранения массы веществ .

Составим уравнение реакции растворения гидроксида алюминия в избытке серной кислоты. Схема реакции:

Для составления уравнения реакции в схеме реакции необходимо подобрать коэффициенты. Подбор коэффициентов обычно начинают с формулы вещества, содержащего наибольшее число атомов элементов, независимо от того, где находится вещество – справа или слева от знака равенства. Уравниваем число атомов алюминия:

2 Al(OH) 3 + H 2 SO 4 → Al 2 (SO 4) 3 + H 2 O.

Уравниваем число атомов серы:

2 Al(OH) 3 + 3 H 2 SO 4 → Al 2 (SO 4) 3 + H 2 O.

Уравниваем число атомов водорода:

2 Al(OH) 3 + 3 H 2 SO 4 → Al 2 (SO 4) 3 + 6 H 2 O.

Подсчитаем число атомов кислорода в левой и правой частях уравнения реакции (проверим правильность подбора коэффициентов).

Уравнение реакции по стадиям записано для того, чтобы показать последовательность в подборе коэффициентов. На практике записывают только одну схему, которую путём подбора коэффициентов превращают в уравнение реакции.

Классификация химических реакций

Химические реакции классифицируют по следующим признакам:

1. по признаку изменения числа и состава исходных веществ и продуктов реакции делятся на следующие типы (или группы) реакций:

− реакции соединения;

− реакции разложения;

− реакции замещения;

− реакции обмена.

2 . по обратимости реакции подразделяются на:

− необратимые реакции;

− обратимые реакции.

3. по тепловому эффекту реакции подразделяются на:

− экзотермические реакции;

− эндотермические реакции.

4. по изменению степеней окисления атомов элементов в ходе химической реакции подразделяются на:

− реакции без изменения степеней окисления;

− реакции с изменением степеней окисления (или окислительно-восстановительные).

Рассмотрим эти типы химических реакций.

1. Классификация по признаку изменения числа и состава исходных веществ и продуктов реакции.

Реакции соединения – это реакции, в результате которых из двух или нескольких веществ образуется одно новое вещество, например:

2H 2 +O 2 → 2H 2 O,



SO 3 + H 2 O → H 2 SO 4 ,

2Cu + O 2 2CuO,

CaO + H 2 O → Ca(OH) 2 ,

4NO 2 + O 2 + 2H 2 O → 4HNO 3 .

Реакции разложения – это реакции, в результате которых из одного сложного вещества образуется два или несколько новых веществ, например:

Ca(HCO 3) 2 CaCO 3 +CO 2 + H 2 O,

Zn(OH) 2 ZnO + H 2 O,

2KNO 3 → 2KNO 2 + O 2 ,

CaCO 3 CaO + CO 2 ,

2AgNO 3 2Ag + 2NO 2 + O 2 ,

4KClO 3 3KClO 4 + KCl.

Реакции замещения – это реакции между простыми и сложными веществами, в результате которых атомы простого вещества замещают атомы сложного вещества (при составлении уравнений реакций этого типа нужно помнить о правилах замещения и пользоваться приложением В1), например:

Fe + CuSO 4 → Cu + FeSO 4 ,

Zn + 2HCl → ZnCl 2 + H 2 ,

Cl 2 + 2KI → I 2 + 2KCl,

Ca + 2H 2 O → Ca(OH) 2 + H 2 .

Реакции обмена – это реакции между двумя сложными веществами, в результате которых два вещества обмениваются своими ионами, образуя два новых вещества. Реакции обмена протекают, если в результате обмена ионами образуются малорастворимые вещества (осадки), газообразные вещества или растворимые малодиссоциирующие вещества (слабые электролиты), например:

ВaCl 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaCl,

CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O,

HCl + NaOH → NaCl + H 2 O,

(реакция нейтрализации).

При написании ионных уравнений реакций обмена слабые электролиты, труднорастворимые и газообразные вещества записывают в недиссоциированном виде (в виде молекул).

2. Классификация по признаку обратимости

Химические реакции по признаку обратимости подразделяются на обратимые и необратимые.

Обратимые химические реакции – это химические реакции, которые одновременно протекают в двух взаимно противоположных направлениях, в прямом и обратном, например: 2SO 2 + O 2 ↔ 2SO 3 ,

N 2 + 3H 2 ↔ 2NH 3 ,

H 2 + I 2 ↔ 2HI.

Необратимые химические реакции – это химические реакции, которые протекают в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества (образующиеся продукты уходят из сферы реакции – выпадают в виде осадка, выделяются в виде газа, образуются малодиссоцированные соединения или реакция сопровождается большим выделением энергии), например:

H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O,

AgNO 3 + NaBr → AgBr↓ + NaNO 3 ,

Cu + 4HNO 3 → Cu(NO 3) 2 + 2NO 2 +2H 2 O.

3. Классификация по тепловому эффекту реакции

По тепловому эффекту (Q или ∆Н; ∆Н – изменение энтальпии (теплового эффекта реакции)) химические реакции делятся на экзотермические и эндотермические.

Экзотермические химические реакции (∆Н < 0) – это химические реакции, происходящие с выделением теплоты (энергии), теплосодержание системы уменьшается, например: Fe + S → FeS, ∆Н = − 96 кДж,

С + О 2 → СО 2 , ∆Н = − 394 кДж.

Эндотермические химические реакции (∆Н > 0) – это химические реакции, происходящие с поглощением теплоты (энергии), теплосодержание системы возрастает, например: 2Hg → 2Hg + O 2 , ∆Н = + 18 кДж,

CaCO 3 → CaO + CO 3 , ∆Н = + 1200 кДж.

Экзотермическими реакциями являются многие реакции соединения. Эндотермическими реакциями являются многие реакции разложения.

4. Классификация по признаку изменения степеней окисления атомов элементов реагирующих веществ.

Химические реакции по признаку изменения степеней окисления атомов элементов в молекулах в ходе химической реакции делятся на две группы:

1. реакции, которые протекают без изменения степеней окисления атомов элементов, например: .

2. реакции, которые протекают с изменением степеней окисления атомов элементов (окислительно-восстановительные реакции), например:

Реакции соединения с участием простых веществ, а также реакции замещения являются окислительно-восстановительными реакциями.

Реакции разложения, соединения сложных веществ могут происходить как без изменения степеней окисления элементов, так и с изменением степеней окисления атомов элементов.

Реакции обмена всегда происходят без изменения степеней окисления (таблица 2).

Таблица 2 – Примеры реакций различных типов, протекающих с изменением и без изменений степеней окисления

Реакции Без изменения степени окисления Окислительно - восстановительные
Соединения CaO + H 2 O → Ca(OH) 2 Na 2 O + SO 3 → Na 2 SO 4
Разложения t 0 (CuOH) 2 CO 3 2CuO +CO 2 +H 2 O t 0 Cu(OH) 2 CuO + H 2 O
Замещения нет
Обмена BaCl 2 + Na 2 SO 4 →BaSO 4 ↓ + 2NaCl CuO + 2HNO 3 → Cu(NO 3) 2 + H 2 O нет

Классификация химических реакций имеет большое значение в химии. Она помогает обобщать, систематизировать знания о реакциях и устанавливать закономерности их протекания.

Каждую химическую реакцию можно охарактеризовать по нескольким признакам, например: реакция , ∆Н = − 92 кДж

имеет следующие характеристики:

это реакция 1) соединения;

2) экзотермическая;

3) обратимая;

4) окислительно-восстановительная.

Вопросы и задачи для самоконтроля

1) Какой объем займут: а) 1 г водорода; б) 32 г кислорода; в) 14 г азота при нормальных условиях?

2) Вычислить массу в граммах при нормальных условиях:

а) 1 л азота; б) 8 л СО 2 ; в) 1 м 3 кислорода.

3) Какой объем займут 9,03 × 10 23 молекул хлора при нормальных условиях?

4) Сколько молекул содержится в 16 г кислорода?

5) Сколько молей серной кислоты (H 2 SO 4) содержится в 196 г её?

6) Сколько молей карбоната натрия (Na 2 CO 3) содержится в 53 г его?

7) Сколько молей гидроксида натрия (NaOH) содержится в 160 г его?

8) Определить степень окисления хлора в следующих соединениях:

NaClO, NaClO 2 , NaClO 4 , CaCl 2 , Cl 2 O 7 , KClO 3 , HCl.

9) Определить степень окисления фосфора в следующих соединениях:

H 3 PO 4 , PH 3 , KH 2 PO 4 , K 2 HPO 4 , HPO 3 , H 4 P 2 O 7 .

10) Определить степень окисления марганца в следующих соединениях:

MnO, Mn(OH) 4 , KMnO 4 ,K 2 MnO 4 , K 2 MnO 3 .

11) Какие типы химических реакций вам известны? Приведите примеры.

12) Какая реакция: соединения, разложения, замещения или обмена происходит при образовании воды:

а) в результате горения водорода на воздухе;

б) в результате взаимодействия водорода с оксидом меди (II);

в) в результате нагревания гидроксида железа (III);

г) при взаимодействии гидрокарбоната калия с гидроксидом калия.

Инструкции для балансировки химических уравнений:
  • Введите уравнение химической реакции и нажмите «Equalize».

    химическое решение ионных уравнений

    Ответ на этот вопрос будет показан ниже

  • Всегда используйте верхний край первого символа в имени химического элемента и строчный регистр для второго символа. Например: Fe, Au, Co, C, O, N, F. Сравнить: Co-кобальт и окись углерода
  • Используйте {-} или e, чтобы сбалансировать полуреакцию окислительно-восстановительного процесса
  • Чтобы отметить ионные заряды, используйте вкладки: {+3} или {3+} или {3}.

    Пример: Fe {3 +} +. I {-} = Fe {2 +} + I2

  • В случае сложных соединений с повторяющимися группами заменяются неизменные части в формуле реагента.
    Например, уравнение C6H5C2H5 + O2 = C6H5OH + CO2 + H2O не будет сбалансировано,
    но если C6H5 заменяется на X, все будет PhC2H5 + O2 = PhOH + CO2 + H2O

Примеры идеальных уравнений химического равновесия: Примеры уравнений химических реагентов (предлагается все уравнение): Свяжитесь с нами о ваших опытах с уравнениями химического баланса.

Химические уравнения сегодня сбалансированы

Используя этот сайт, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.
© 2018 webqc.org Все права защищены

1. ЭТАП ОКИСЛЕНИЯ

второй

ЭТАП ОКИСЛЕНИЯ — МЕРА
«ЭЛЕКТРОННАЯ ДЕФОРМАЦИЯ»
ОБОЛОЧКИ ОБРАЗОВАНИЯ
ХИМИЧЕСКИЕ СООБЩЕНИЯ.
Показывает, как и сколько
Электронная оболочка под
проектирование химических связей.

3. Строгое определение скорости окисления:

УРОВЕНЬ ОКИСЛЕНИЯ — ЧТО НЕОБХОДИМО
ХИМИЧЕСКИЙ АТОМНЫЙ ЗАРЯД
ЭЛЕМЕНТЫ В КОМПЛЕКСНЫХ МАТЕРИАЛАХ,
ОПРЕДЕЛЕНЫ ИЗ
ПРАВИЛА, КОТОРЫЕ
(КОМПЛЕКСНЫЙ МАТЕРИАЛ)
Ионы.

четвёртая

ПРАВИЛА И ИСКЛЮЧЕНИЯ:

первый
второй
третий
четвёртая
Степень окисления свободных атомов и
Атомы, которые образуют простые вещества, одинаковы
Ничего!
В водороде в соединениях с неметаллами
степень окисления равна +1, с металлами -1;
Кислород имеет степень окисления в комплексе
вещество составляет -2, за исключением соединений с
фтор (+1, +2) и пероксиды (H2O2) -1;
Общее состояние окисления всех
химические элементы в соединении
ZERO !!!

пятые

Стойкие состояния окисления:

Металлы группы IA (Li, Na, K,
Rb, Cs, Fr) +1
Металлы IIA (Be, Mg, Ca,
Sr, Ba) +2
Металлы IIIA (Al) +3
Nekovine v
электроотрицательная часть

шестые

Как сделать ионные уравнения. Задача 31 об унифицированном государственном экзамене по химии

Двоичные соединения

Двоичные вызовы
соединения, молекулы
которые составляют их
атомы двух химических веществ
элементы.

7. Номенклатура бинарных соединений:

первый
второй
третий
Вызвать «отрицательную часть»
молекул (таблица ниже
слайд)
Назовите «положительную часть»
молекулы (элемент родительного падежа
случай)
В скобках в римских цифрах
указывает степень окисления
(если переменная)

восьмых

Элемент в отрицательной части
Имя подключения
скорость
окисление
водород (только с металлами)
гидрид
-1
углерод
карбид
-4
азот
нитрид
-3
Кислород (исключая пероксиды в форме
H2O2)
оксид
-2
фтор
фторид
-1
хлор
хлорид
-1
кремний
кремний
-4
фосфор
фосфид
-3
сера
сульфид
-2
бром
бромид
-1
йод
йодид
-1

девятую

Пример двоичного имени соединения:

ФОРМУЛИРОВКА ДНЯ ФОРМУЛИРОВАНИЯ — SO2
В положительной части мы видим, что элемент c
переменная скорость окисления — сера
(необходимо будет определить степень окисления), v
отрицательная часть состояния окисления
Неметалл всегда постоянный (см.
таблицу).
первый
Определить степень окисления серы;
второй
Введите имя ссылки из
отрицательная часть: оксид
сера (IV)

English РусскийРули

Ионные уравнения реакции.

Эта услуга призвана приравнивать химические реакции. При создании сервиса мы старались учитывать преимущества и недостатки существующих сервисов, которые приравнивают химические реакции — многоуровневый алгоритм выравнивания использует несколько различных математических методов.

Служба была проверена на 10 000 химических реакций, и все они были приравнены. Со временем мы улучшим обслуживание, если это необходимо.
Химические элементы необходимо вводить, поскольку они записываются в периодическую таблицу. с большой буквы. (CuSO4 является правильным, cuso4 является неправильным).

Внимание, пожалуйста! Это все уравнивание реакций , не «Найти неорганические реакции «

Примеры химических реакций для выравнивания (реакции еще не приравнены):

H2 + O2 = H2O
Al + S = Al2S3
AgCl + Na2S = Ag2S + NaCl
ZrCl4 = ZrCl3 + ZrCl2 + ZrCl + Cl2
NaOH + Cl2 + Br2 = NaBrO3 + NaCl + H2O
NaCl + H2SO4 + KMnO4 = Cl2 + MnSO4 + Na2SO4 + K2SO4 + H2O
4 3 + KMnO4 + HNO3 = K2Cr2O7 + CO2 + KNO3 + Mn (NO3) 2 + H2O
4 3 + KMnO4 + H2SO4 = K2Cr2O7 + CO2 + KNO3 + MnSO4 + K2SO4 + H2O

За помощь на работе

Метод ионно-ионного равновесия

Будем более подробно описывать электронный и ионный равновесный метод.

Чтобы сформировать такое уравнение реакции восстановления окисления, необходимо следующее:

Запишите схему реакции, определите ионы (молекулы), участвующие в процессе окисления и восстановления. Найти ионные потоки вместо состояний окисления соответствующих атомов (продукты реакции определяются опытом или на основе эталонных данных).

2. Создает ионные уравнения для каждой половины реакции. Когда этот высокоэлектролит должен регистрироваться в виде ионов и слабых электролитов, осадков и газов — в форме молекул и учитывать количество атомов кислорода в исходных материалах и продуктах реакции:

а) если ион-источник (молекула) содержит несколько атомов кислорода в качестве продукта реакции, избыточные атомы кислорода в кислой среде связаны с ионами водорода для образования молекул воды; в нейтральных и щелочных средах кислород реагирует с молекулами воды с образованием ионов гидроксида;

б) если ионный источник (молекула) содержит меньше атома кислорода, чем получаемое соединение, недостаток компенсируется их атомами в кислотных и нейтральных растворах из-за водной молекулы и щелочных растворов — из-за ионов гидроксида.

На основании закона о сохранении массы и закона электронейтральности

(общее количество затрат на продукты реакции должно быть таким же, как общее

следует количество затрат на исходные материалы) при выводе уравнений

Рассмотрим баланс вещества и баланс затрат.

Например, рассмотрим реакцию, которая возникает во время взаимодействия нитрата калия и перманганата калия в кислой среде

KNO2 + KMnO4 + H2S04 → KNO3 + MnS04 + K2SO4 + H2O

или в ионной форме:

K + + NO2- + K + + MnO4- + 2H + + SO42- → K + + NO3- + Mn2 + + SO42- + 2K + + SO42- + H2O

Схема реакции показывает, что ионы (молекулы) участвуют в восстановлении окисления:

NO2- + MnO4- + 2H + → NO3- + Mn2 + + H2O

Мы составляем электронные ионные уравнения для каждой полуреакции

Кислород, который отсутствует в левой части, заменяет молекулы воды, в то время как одна молекула воды необходима для поддержания баланса вещества, а в правой части — 2H +

NO2- + H2O → NO3- + 2H +,

Если выполняется равенство нагрузок на правой и левой сторонах уравнения, схема принимает следующий вид:

(NO2- + H2O) — — 2e- = (NO3- + 2H +) +

б) Ионы MnO4 в кислой среде восстанавливаются до ионов Mn2 + (желтоватый цвет изменяется до бесцветного):

избыток кислорода в левой части уравнения должен быть связан с ионами водорода, поскольку реакцию проводят в кислой среде, чтобы поддерживать баланс вещества, 8Н + и правый — 4Н2О

MnO4- + 8H + → Mn2 + 4H2O;

Учитывая необходимость баланса затрат, предыдущая схема должна быть дополнена

(MnO4- + 8H +) + 7 + 5e- = (Mn2 + + 4H2O) +2

Чтобы составить полное ионное уравнение окислительно-восстановительных процессов этой реакции, необходимо обобщить полученные полуреакции. Так как число электронов, даваемых восстановителем, должно быть равно числу электронов, принимаемых окислителем, умножить уравнение реакции на уменьшение на 2 и окисление на 5, затем добавить

5 NO2- + H2O — 2e- = NO3- + 2H + — процесс окисления

2 MnO4- + 8H + + 5e- = Mn2 + + 4H2O-процесс восстановления

5NO2- + 5H20 + 2MnO4- + 16H + = 5NO3- + 10H + + 2Mn2 + + 8H20

Найти уравнения химических реакций

Давайте упростим (уменьшим подобные термины)

5NO2- + 2MnO4- + 6H + = 5NO3- + 2Mn2 + + 3H2O

4. На основе коэффициентов полного ионного уравнения коэффициенты определялись в молекулярном уравнении реакции с учетом ионов, которые не менялись до и после реакции (K + и SO42-)

5KNO2 + 2KMnO4 + 3H2S04 = 5KNO3 + 2MnS04 + K2S04 + 3H2O

Таким образом, используя уравнение электронного иона, мы сразу получаем все коэффициенты.

Электронно-ионный метод более эффективно отражает процессы, происходящие во время реакции.

Раствор не содержит ионов N + 3, Mn + 7, N + 5 («гипотетические» ионы), но есть ионы NO2-, MnO4- и NO3- (истинные ионы).

Prejšnja1234567Naslednja

Электролиты в растворах образуют ионы, поэтому их часто используют для реагирования на ряд реакций ионных уравнений.

В зависимости от диссоциации в растворах могут быть две версии:

1) Общие вещества — сильные электролиты, которые быстро растворяются в воде и полностью диссоциируют.

2) Одно или несколько из полученных веществ — газ, осадок или образование воды (слабый электролит).

К примеру,

K2CO3 + 2HCl = 2KCl + CO2 + H2O.

В ионной форме:

2K + + CO32- + 2H + + 2Cl- = 2K + + 2Cl- + CO2 + H2O.

Молекула воды регистрируется в неполной форме, потому что

Уравновешивание химических реакций

это слабый электролит. Неполярные соединения СО2 растворяют в воде в воде и удаляют из реакционной сферы. Те же реакционные частицы уменьшаются и Укороченное ионное уравнение:

CO32- + 2H + = CO2 + H2O.

В реакции, к которой поступает любая кислота, реакция будет происходить путем образования молекулы воды.

Ионное уравнение относится к молекулярному, а не к одной реакции, а к целой группе подобных взаимодействий.

Поэтому качественные реакции на различные ионы настолько распространены.