Меню
Бесплатно
Главная  /  Наши дети  /  Теорема об окружности описанной около четырехугольника доказательство. Свойства вписанных и описанных четырёхугольников

Теорема об окружности описанной около четырехугольника доказательство. Свойства вписанных и описанных четырёхугольников

Примерами описанных четырёхугольников могут служить дельтоиды , которые включают ромбы , которые, в свою очередь, включают квадраты . Дельтоиды - это в точности те описанные четырёхугольники, которые также являются ортодиагональными . Если четырёхугольник является описанным и вписанным четырёхугольником , он называется бицентральным .

Свойства

В описанном четырёхугольнике четыре биссектрисы пересекаются в центре окружности. И наоборот, выпуклый четырёхугольник, в котором четыре биссектрисы пересекаются в одной точке, должен быть описанным, и точка пересечения биссектрис является центром вписанной окружности .

Если противоположные стороны в выпуклом четырёхугольнике ABCD (не являющийся трапецией) пересекаются в точках E и F , то они являются касательными к окружности тогда и только тогда, когда

B E + B F = D E + D F {\displaystyle \displaystyle BE+BF=DE+DF} A E − E C = A F − F C . {\displaystyle \displaystyle AE-EC=AF-FC.}

Второе равенство почти то же, что и равенство в теореме Уркхарта . Разница только в знаках - в теореме Уркхарта суммы, а здесь разности (см. рисунок справа).

Другое необходимое и достаточное условие - выпуклый четырёхугольник ABCD является описанным в том и только в том случае, когда вписанные в треугольники ABC и ADC окружности касаются друг друга .

Описание по углам, образованным диагональю BD со сторонами четырёхугольника ABCD , принадлежит Иосифеску (Iosifescu). Он в 1954 доказал, что выпуклый четырёхугольник имеет вписанную окружность тогда и только тогда, когда

tan ⁡ ∠ A B D 2 ⋅ tan ⁡ ∠ B D C 2 = tan ⁡ ∠ A D B 2 ⋅ tan ⁡ ∠ D B C 2 . {\displaystyle \tan {\frac {\angle ABD}{2}}\cdot \tan {\frac {\angle BDC}{2}}=\tan {\frac {\angle ADB}{2}}\cdot \tan {\frac {\angle DBC}{2}}.} R a R c = R b R d {\displaystyle R_{a}R_{c}=R_{b}R_{d}} ,

где R a , R b , R c , R d являются радиусами окружностей, внешне касательным сторонам a , b , c , d соответственно и продолжениям смежных сторон с каждой стороны .

Некоторые другие описания известны для четырёх треугольников, образованных диагоналями.

Специальные отрезки

Восемь отрезков касательных описанного четырёхугольника являются отрезками между вершинами и точками касания на сторонах. В каждой вершине имеется два равных касательных отрезка.

Точки касания образуют вписанный четырёхугольник.

Площадь

Нетригонометрические формулы

K = 1 2 p 2 q 2 − (a c − b d) 2 {\displaystyle K={\tfrac {1}{2}}{\sqrt {p^{2}q^{2}-(ac-bd)^{2}}}} ,

дающая площадь в терминах диагоналей p , q и сторон a , b , c , d касательного четырёхугольника.

Площадь можно представить также в терминах касательных отрезков (см. выше). Если их обозначить через e , f , g , h , то касательный четырёхугольник имеет площадь

K = (e + f + g + h) (e f g + f g h + g h e + h e f) . {\displaystyle K={\sqrt {(e+f+g+h)(efg+fgh+ghe+hef)}}.}

Более того, площадь касательного четырёхугольника можно выразить в терминах сторон a, b, c, d и соответствующих длин касательных отрезков e, f, g, h

K = a b c d − (e g − f h) 2 . {\displaystyle K={\sqrt {abcd-(eg-fh)^{2}}}.}

Поскольку eg = fh в том и только в том случае, когда он также является вписанным, получаем, что максимальная площадь a b c d {\displaystyle {\sqrt {abcd}}} может достигаться только на четырёхугольниках, которые являются и описанными, и вписанными одновременно.

Тригонометрические формулы

K = a b c d sin ⁡ A + C 2 = a b c d sin ⁡ B + D 2 . {\displaystyle K={\sqrt {abcd}}\sin {\frac {A+C}{2}}={\sqrt {abcd}}\sin {\frac {B+D}{2}}.}

Для заданного произведения сторон площадь будет максимальной, когда четырёхугольник является также вписанным . В этом случае K = a b c d {\displaystyle K={\sqrt {abcd}}} , поскольку противоположные углы являются дополнительными . Это можно доказать и другим способом, используя математический анализ .

Ещё одна формула площади описанного четырёхугольника ABCD , использующая два противоположных угла

K = (O A ⋅ O C + O B ⋅ O D) sin ⁡ A + C 2 {\displaystyle K=\left(OA\cdot OC+OB\cdot OD\right)\sin {\frac {A+C}{2}}} ,

где O является центром вписанной окружности.

Фактически площадь можно выразить в терминах лишь двух смежных сторон и двух противоположных углов

K = a b sin ⁡ B 2 csc ⁡ D 2 sin ⁡ B + D 2 . {\displaystyle K=ab\sin {\frac {B}{2}}\csc {\frac {D}{2}}\sin {\frac {B+D}{2}}.} K = 1 2 | (a c − b d) tan ⁡ θ | , {\displaystyle K={\tfrac {1}{2}}|(ac-bd)\tan {\theta }|,}

где θ угол (любой) между диагоналями. Формула неприменима к случаю дельтоидов, поскольку в этом случае θ равен 90° и тангенс не определён.

Неравенства

Как упомянуто было вскользь выше, площадь касательного многоугольника со сторонами a , b , c , d удовлетворяет неравенству

K ≤ a b c d {\displaystyle K\leq {\sqrt {abcd}}}

и равенство достигается тогда и только тогда, когда четырёхугольник является бицентральным .

Согласно Т. А. Ивановой (1976), полупериметр s описанного четырёхугольника удовлетворяет неравенству

s ≥ 4 r {\displaystyle s\geq 4r} ,

где r - радиус вписанной окружности. Неравенство превращается в равенство тогда и только тогда, когда четырёхугольник является квадратом . Это означает, что для площади K = rs , выполняется неравенство

K ≥ 4 r 2 {\displaystyle K\geq 4r^{2}}

с переходом в равенство в том и только в том случае, когда четырёхугольник - квадрат.

Свойства частей четырёхугольника

Четыре отрезка прямых между центром вписанной окружности и точками касания делят четырёхугольник на четыре прямоугольных дельтоида ?! .

Если прямая делит описанный четырёхугольник на два многоугольника с равными площадями и равными периметрами , то эта линия проходит через инцентр .

Радиус вписанной окружности

Радиус вписанной окружности описанного четырёхугольника со сторонами a , b , c , d задаётся формулой

r = K s = K a + c = K b + d {\displaystyle r={\frac {K}{s}}={\frac {K}{a+c}}={\frac {K}{b+d}}} ,

где K - площадь четырёхугольника, а s - полупериметр. Для описанных четырёхугольников с заданным полупериметром радиус вписанной окружности максимален, когда четырёхугольник является одновременно и вписанным .

В терминах отрезков касательных радиус вписанной окружности .

r = e f g + f g h + g h e + h e f e + f + g + h . {\displaystyle \displaystyle r={\sqrt {\frac {efg+fgh+ghe+hef}{e+f+g+h}}}.}

Радиус вписанной окружности можно выразить также в терминах расстояния от инцентра O до вершин описанного четырёхугольника ABCD . Если u = AO , v = BO , x = CO и y = DO , то

r = 2 (σ − u v x) (σ − v x y) (σ − x y u) (σ − y u v) u v x y (u v + x y) (u x + v y) (u y + v x) {\displaystyle r=2{\sqrt {\frac {(\sigma -uvx)(\sigma -vxy)(\sigma -xyu)(\sigma -yuv)}{uvxy(uv+xy)(ux+vy)(uy+vx)}}}} ,

где σ = 1 2 (u v x + v x y + x y u + y u v) {\displaystyle \sigma ={\tfrac {1}{2}}(uvx+vxy+xyu+yuv)} .

Формулы для углов

Если e , f , g и h отрезки касательных от вершин A , B , C и D соответственно к точкам касания окружности четырёхугольником ABCD , то углы четырёхугольника можно вычислить по формулам

sin ⁡ A 2 = e f g + f g h + g h e + h e f (e + f) (e + g) (e + h) , {\displaystyle \sin {\frac {A}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(e+f)(e+g)(e+h)}}},} sin ⁡ B 2 = e f g + f g h + g h e + h e f (f + e) (f + g) (f + h) , {\displaystyle \sin {\frac {B}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(f+e)(f+g)(f+h)}}},} sin ⁡ C 2 = e f g + f g h + g h e + h e f (g + e) (g + f) (g + h) , {\displaystyle \sin {\frac {C}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(g+e)(g+f)(g+h)}}},} sin ⁡ D 2 = e f g + f g h + g h e + h e f (h + e) (h + f) (h + g) . {\displaystyle \sin {\frac {D}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(h+e)(h+f)(h+g)}}}.}

Угол между хордами KM и LN задаётся формулой (см. рисунок)

sin ⁡ φ = (e + f + g + h) (e f g + f g h + g h e + h e f) (e + f) (f + g) (g + h) (h + e) . {\displaystyle \sin {\varphi }={\sqrt {\frac {(e+f+g+h)(efg+fgh+ghe+hef)}{(e+f)(f+g)(g+h)(h+e)}}}.}

Диагонали

Если e , f , g и h являются отрезками касательных от A , B , C и D до точек касания вписанной окружности четырёхугольником ABCD , то длины диагоналей p = AC и q = BD равны

p = e + g f + h ((e + g) (f + h) + 4 f h) , {\displaystyle \displaystyle p={\sqrt {{\frac {e+g}{f+h}}{\Big (}(e+g)(f+h)+4fh{\Big)}}},} q = f + h e + g ((e + g) (f + h) + 4 e g) . {\displaystyle \displaystyle q={\sqrt {{\frac {f+h}{e+g}}{\Big (}(e+g)(f+h)+4eg{\Big)}}}.}

Хорды точек касания

Если e , f , g и h являются отрезками от вершин до точек касания, то длины хорд до противоположных точек касания равны

k = 2 (e f g + f g h + g h e + h e f) (e + f) (g + h) (e + g) (f + h) , {\displaystyle \displaystyle k={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+f)(g+h)(e+g)(f+h)}}},} l = 2 (e f g + f g h + g h e + h e f) (e + h) (f + g) (e + g) (f + h) , {\displaystyle \displaystyle l={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+h)(f+g)(e+g)(f+h)}}},}

где хорда k соединяет стороны с длинами a = e + f и c = g + h , а хорда l соединяет стороны длиной b = f + g и d = h + e . Квадрат отношения хорд удовлетворяет соотношению

k 2 l 2 = b d a c . {\displaystyle {\frac {k^{2}}{l^{2}}}={\frac {bd}{ac}}.}

Две хорды

Хорда между сторонами AB и CD в описанном четырёхугольнике ABCD длиннее, чем хорда между сторонами BC и DA тогда и только тогда, когда средняя линия между сторонами AB и CD короче, чем средняя линия между сторонами BC и DA .

Если описанный четырёхугольник ABCD имеет точки касания M на AB и N на CD и хорда MN пересекает диагональ BD в точке P , то отношение отрезков касательных B M D N {\displaystyle {\tfrac {BM}{DN}}} равно отношению B P D P {\displaystyle {\tfrac {BP}{DP}}} отрезков диагонали BD .

Коллинеарные точки

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно в описанном четырёхугольнике ABCD O , а пары противоположных сторон пересекаются в точках E и F и M 3 - середина отрезка EF , тогда точки M 3 , M 1 , O , и M 2 лежат на одной прямой Прямая, соединяющая эти точки, называется прямой Ньютона четырёхугольника.

E и F , а продолжения противоположных сторон четырёхугольника, образованного точками касания, пересекаются в точках T и S , то четыре точки E , F , T и S лежат на одной прямой

AB , BC , CD , DA в точках M , K , N и L соответственно, и если T M , T K , T N , T L являются изотомически сопряжёнными точками этих точек (то есть AТ M = BM и т.д.), то точка Нагеля определяется как пересечение прямых T N T M и T K T L . Обе эти прямые делят периметр четырёхугольника на две равные части. Однако важнее то, что точка Нагеля Q , "центроид площади" G и центр вписанной окружности O лежат на одной прямой, и при этом QG = 2GO . Эта прямая называется прямой Нагеля описанного четырёхугольника .

В описанном четырёхугольнике ABCD с центром вписанной окружности O P , пусть H M , H K , H N , H L являются ортоцентрами треугольников AOB , BOC , COD и DOA соответственно. Тогда точки P , H M , H K , H N и H L лежат на одной прямой.

Конкурентные и перпендикулярные прямые

Две диагонали четырёхугольника и две хорды, соединяющие противоположные точки касания (противоположные вершины вписанного четырёхугольника), конкурентны (т.е. пересекаются в одной точке). Для того, чтобы показать это, можно воспользоваться частным случаем теоремы Брианшона , которая утверждает, что шестиугольник, все стороны которого касаются коническое сечение , имеет три диагонали, пересекающиеся в одной точке. Из описанного четырёхугольника легко получить шестиугольник с двумя углами по 180° путём вставки двух новых вершина противоположных точках касания. Все шесть сторон полученного шестиугольника являются касательными вписанной окружности, так что его диагонали пересекаются в одной точке. Но две диагонали шестиугольника совпадают с диагоналями четырёхугольника, а третья диагональ проходит через противоположные точки касания. Повторив те же рассуждения для двух других точек касания, получим требуемый результат.

Если вписанная окружность касается сторон AB , BC , CD и DA в точках M , K , N , L соответственно, то прямые MK , LN и AC конкурентны.

Если продолжения противоположных сторон описанного четырёхугольника пересекаются в точках E и F , а диагонали пересекаются в точке P , то прямая EF перпендикулярна продолжению OP , где O - центр вписанной окружности .

Свойства вписанной окружности

Отношения двух противоположных сторон описанного четырёхугольника можно выразить через расстояния от центра вписанной окружности O до соответствующих сторон

A B C D = O A ⋅ O B O C ⋅ O D , B C D A = O B ⋅ O C O D ⋅ O A . {\displaystyle {\frac {AB}{CD}}={\frac {OA\cdot OB}{OC\cdot OD}},\quad \quad {\frac {BC}{DA}}={\frac {OB\cdot OC}{OD\cdot OA}}.}

Произведение двух смежных сторон описанного четырёхугольника ABCD с центром вписанной окружности O удовлетворяет соотношению

A B ⋅ B C = O B 2 + O A ⋅ O B ⋅ O C O D . {\displaystyle AB\cdot BC=OB^{2}+{\frac {OA\cdot OB\cdot OC}{OD}}.}

Если O - центр вписанной окружности четырёхугольника ABCD , то

O A ⋅ O C + O B ⋅ O D = A B ⋅ B C ⋅ C D ⋅ D A . {\displaystyle OA\cdot OC+OB\cdot OD={\sqrt {AB\cdot BC\cdot CD\cdot DA}}.}

Центр вписанной окружности O совпадает с "центроидом вершин" четырёхугольника в том и только в том случае, когда

O A ⋅ O C = O B ⋅ O D . {\displaystyle OA\cdot OC=OB\cdot OD.}

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно, то

O M 1 O M 2 = O A ⋅ O C O B ⋅ O D = e + g f + h , {\displaystyle {\frac {OM_{1}}{OM_{2}}}={\frac {OA\cdot OC}{OB\cdot OD}}={\frac {e+g}{f+h}},}

где e , f , g и h - отрезки касательных в вершинах A , B , C и D соответственно. Комбинируя первое равенство с последним, получим, что "центроид вершин" описанного четырёхугольника совпадает с центом вписанной окружности тогда и только тогда, когда центр вписанной окружности лежит посередине между средними точками диагоналей.

1 r 1 + 1 r 3 = 1 r 2 + 1 r 4 . {\displaystyle {\frac {1}{r_{1}}}+{\frac {1}{r_{3}}}={\frac {1}{r_{2}}}+{\frac {1}{r_{4}}}.}

Это свойство было доказано пятью годами ранее Вайнштейном . В решении его задачи похожее свойство было дано Васильевым и Сендеровым. Если через h M , h K , h N и h L обозначить высоты тех же треугольников (опущенных из пересечения диагоналей P ), то четырёхугольник является описанным тогда и только тогда, когда

1 h M + 1 h N = 1 h K + 1 h L . {\displaystyle {\frac {1}{h_{M}}}+{\frac {1}{h_{N}}}={\frac {1}{h_{K}}}+{\frac {1}{h_{L}}}.}

Ещё одно похожее свойство относится к радиусам вневписанных окружностей r M , r K , r N и r L для тех же четырёх треугольников (четыре вневписанные окружности касаются каждой из сторон четырёхугольника и продолжений диагоналей). Четырёхугольник является описанным в том и только в том случае, когда

1 r M + 1 r N = 1 r K + 1 r L . {\displaystyle {\frac {1}{r_{M}}}+{\frac {1}{r_{N}}}={\frac {1}{r_{K}}}+{\frac {1}{r_{L}}}.}

Если R M , R K , R N и R L - радиусы описанных окружностей треугольников APB , BPC , CPD и DPA соответственно, то треугольник ABCD является описанным тогда и только тогда, когда

R M + R N = R K + R L . {\displaystyle R_{M}+R_{N}=R_{K}+R_{L}.}

В 1996 Вайнштейн, похоже, был первым, кто доказал ещё одно замечательное свойство описанных четырёхугольников, которое позднее появилось в нескольких журналах и сайтах . Свойство утверждает, что если выпуклый четырёхугольников разделён на четыре неперекрывающихся треугольника его диагоналями, центры вписанных окружностей этих треугольников лежат на одной окружности тогда и только тогда, когда четырёхугольник является описанным. Фактически центры вписанных окружностей образуют ортодиагональный вписанный четырёхугоольник . Здесь вписанные окружности можно заменить на вневписанные (касающиеся стороны и продолжения диагоналей четырёхугольника). Тогда выпуклый четырёхугольник является описанным тогда и только тогда, когда центры вневписанных окружностей являются вершинами вписанного четырёхугольника .

Выпуклый четырёхугольник ABCD , в котором диагонали пересекаются в точке P , является описанным тогда и только тогда, когда четыре центра вневписанных окружностей треугольников APB , BPC , CPD и DPA лежат на одной окружности (здесь вневписанные окружности пересекают стороны четырёхугольника, в отличие от аналогичного утверждения выше, где вневписанные окружности лежат вне четырёхугольника). Если R m , R n , R k и R l - радиусы вневписанных окружностей APB , BPC , CPD и DPA соответственно, противоположных вершинам B и D , то ещё одним необходимым и достаточным условием того, что четырёхугольник является описанным, будет

1 R m + 1 R n = 1 R k + 1 R l . {\displaystyle {\frac {1}{R_{m}}}+{\frac {1}{R_{n}}}={\frac {1}{R_{k}}}+{\frac {1}{R_{l}}}.} m △ (A P B) + n △ (C P D) = k △ (B P C) + l △ (D P A) {\displaystyle {\frac {m}{\triangle (APB)}}+{\frac {n}{\triangle (CPD)}}={\frac {k}{\triangle (BPC)}}+{\frac {l}{\triangle (DPA)}}}

где m , k , n , l – длины сторон AB , BC , CD и DA , а ∆(APB ) - площадь треугольника APB .

Обозначим отрезки, на которые точка P делит диагональ AC как AP = p a и PC = p c . Аналогичным образом P делить диагональ BD на отрезки BP = p b и PD = p d . Тогда четырёхугольник является описанным тогда и только тогда, когда выполняется одно из равенств:

m p c p d + n p a q b = k p a p d + l p c p b {\displaystyle mp_{c}p_{d}+np_{a}q_{b}=kp_{a}p_{d}+lp_{c}p_{b}} (p a + p b − m) (p c + p d − n) (p a + p b + m) (p c + p d + n) = (p c + p b − k) (p a + p d − l) (p c + p b + k) (p a + p d + l) {\displaystyle {\frac {(p_{a}+p_{b}-m)(p_{c}+p_{d}-n)}{(p_{a}+p_{b}+m)(p_{c}+p_{d}+n)}}={\frac {(p_{c}+p_{b}-k)(p_{a}+p_{d}-l)}{(p_{c}+p_{b}+k)(p_{a}+p_{d}+l)}}} (m + p a − p b) (n + p c − p d) (m − p a + p b) (n − p c + p d) = (k + p c − p b) (l + p a − p d) (k − p c + p b) (l − p a + p d) . {\displaystyle {\frac {(m+p_{a}-p_{b})(n+p_{c}-p_{d})}{(m-p_{a}+p_{b})(n-p_{c}+p_{d})}}={\frac {(k+p_{c}-p_{b})(l+p_{a}-p_{d})}{(k-p_{c}+p_{b})(l-p_{a}+p_{d})}}.}

Условия для описанного четырёхугольника быть другим типом четырёхугольника

ромбом в том и только в том случае, когда противоположные углы равны .

Если вписанная окружность касается сторон AB , BC , CD , DA в точках M , K , N , L соответственно, то ABCD является также вписанным четырёхугольником тогда и только тогда, когда

Первое утверждение из этих трёх означает, что четырёхугольник касаний MKNL является ортодиагональным .

Описанный четырёхугольник является бицентричным (т.е. описанным и вписанным одновременно) тогда и только тогда, когда радиус вписанной окружности наибольший среди всех описанных четырёхугольников, имеющих ту же самую последовательность длин сторон .

Описанный четырёхугольник является дельтоидом в том и только в том случае, когда любое из нижеследующих условий выполняется:

  • Площадь равна половине произведения диагоналей
  • Диагонали перпендикулярны
  • Два отрезка, соединяющие противоположные точки касания, имеют равные длины
  • Одна пара противоположных отрезков от вершины до точки касания имеют одинаковые длины
  • Средние линии имеют одинаковые длины
  • Произведения противоположных сторон равны
  • Центр вписанной окружности лежит на диагонали, являющейся осью симметрии.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Разделы: Математика , Конкурс «Презентация к уроку»

Презентация к уроку









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели.

Образовательная. Создание условий для успешного усвоения понятия описанного четырёхугольника, его свойства, признака и овладения умениями применять их на практике.

Развивающая. Развитие математических способностей, создание условий для умения обобщать и применять прямой и обратный ход мыслей.

Воспитательная. Воспитание чувства красоты эстетикой чертежей, удивления необычным

решением, формирование организованности, ответственность за результаты своего труда.

1. Изучить определение описанного четырёхугольника.

2. Доказать свойство сторон описанного четырёхугольника.

3. Познакомить с двойственностью свойств сумм противоположных сторон и противоположных углов вписанного и описанного четырёхугольников.

4. Дать опыт практического применения рассмотренных теорем при решении задач.

5. Провести первичный контроль уровня усвоения нового материала.

Оборудование:

  • компьютер, проектор;
  • учебник “Геометрия. 10-11 классы” для общеобразоват. учреждений: базовый и профил. уровни авт. А.В. Погорелов.

Программные средства: Microsoft Word, Microsoft Power Point.

Использование компьютера при подготовке учителя к уроку.

С помощью стандартной программы операционной системы Windows созданы к уроку:

  1. Презентация.
  2. Таблицы.
  3. Чертежи.
  4. Раздаточный материал.

План урока

  • Организационный момент. (2 мин.)
  • Проверка домашнего задания. (5 мин.)
  • Изучение нового материала. (28 мин.)
  • Самостоятельная работа. (7 мин.)
  • Домашнее задание.(1 мин.)
  • Итог урока. (2 мин.)
  • Ход урока

    1. Организационный момент. Приветствие. Сообщение темы и цели урока. Запись в тетради даты и темы урока.

    2. Проверка домашнего задания.

    3. Изучение нового материала.

    Работа над понятием описанного многоугольника.

    Определение. Многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.

    Вопрос. Какие из предложенных многоугольников являются описанными, а какие не являются и почему?

    <Презентация. Слайд №2>

    Доказательство свойств описанного четырёхугольника.

    <Презентация. Слайд №3>

    Теорема. В описанном четырёхугольнике суммы противоположных сторон равны.

    Учащиеся работают с учебником, записывают формулировку теоремы в тетрадь.

    1. Представить формулировку теоремы в форме условного предложения.

    2. Каково условие теоремы?

    3. Каково заключение теоремы?

    Ответ. Если четырёхугольник описан около окружности, то суммы противолежащих сторон равны.

    Проводится доказательство, учащиеся делают записи в тетради.

    <Презентация. Слайд №4>

    Учитель. Отметим двойственность ситуаций для сторон и углов описанного и вписанного четырёхугольников.

    Закрепление полученных знаний.

    Задачи.

  • Противоположные стороны описанного четырёхугольника 8 м и 12 м. Можно ли найти периметр?
  • Задачи по готовым чертежам. <Презентация. Слайд №5>
  • Ответ. 1. 10 м. 2. 20 м. 3. 21 м

    Доказательство признака описанного четырёхугольника.

    Сформулировать обратную теорему.

    Ответ. Если в четырёхугольнике суммы противоположных сторон равны, то в него можно вписать окружность. (Вернуться к слайду 2, рис.7) <Презентация. Слайд №2>

    Учитель. Уточните формулировку теоремы.

    Теорема. Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность.

    Работа с учебником. Познакомиться с доказательством признака описанного четырёхугольника по учебнику.

    Применение полученных знаний.

    3. Задачи по готовым чертежам.

    1. Можно ли вписать окружность в четырёхугольник с противоположными сторонами 9 м и 4 м, 10 м и 3 м?

    2. Можно ли вписать окружность в равнобокую трапецию с основаниями 1 м и 9 м, высотой 3 м?

    <Презентация. Слайд №6>

    Письменная работа в тетрадях

    .

    Задача. Найти радиус окружности, вписанной в ромб с диагоналями 6 м и 8 м.

    <Презентация. Слайд № 7>

    4. Самостоятельная работа.

      1 вариант

    1. Можно ли вписать окружность

    1) в прямоугольник со сторонами 7 м и 10 м,

    2. Противоположные стороны четырёхугольника, описанного около окружности, равны 7 м и 10 м.

    Найти периметр четырёхугольника.

    3. Равнобокая трапеция с основаниями 4 м и 16 м описана около окружности.

    1) радиус вписанной окружности,

    2 вариант

    1. Можно ли вписать окружность:

    1) в параллелограмм со сторонами 6 м и 13 м,

    2) в квадрат?

    2. Противоположные стороны четырёхугольника, описанного около окружности, равны 9 м и 11 м. Найти периметр четырёхугольника.

    3. Равнобокая трапеция с боковой стороной 5 м описана около окружности с радиусом 2 м.

    1) основание трапеции,

    2) радиус описанной окружности.

    5. Домашнее задание. П.86, № 28, 29, 30.

    6. Итог урока. Проверяется самостоятельная работа, выставляются оценки.

    <Презентация. Слайд № 8>

    Описанная окружность около четырёхугольника. ? ? Около четырёхугольника можно описать окружность, если сумма противолежащих углов равна 180°: ? + ? =? + ? Если четырёхугольник вписан в окружность, то суммы противолежащих углов равна 180°. ? ? a. d. d1. ТЕОРЕМА ПТОЛОМЕЯ Сумма произведений противолежащих сторон равна произведению диагоналей: ac + bd = d1 d2. d2. b. c. b. Площадь четырёхугольника. a. c. d. Где р – полупериметр четырёхугольника.

    Слайд 9 из презентации «Радиус вписанной и описанной окружности» . Размер архива с презентацией 716 КБ.

    Геометрия 9 класс

    краткое содержание других презентаций

    «Золотое сечение в жизни» - Золотая спираль в искусстве. Путешествие в историю математики. Валуйки. Холст. Живопись и золотое сечение. Золотая спираль в природе. Золотое сечение заложено в пропорциях человеческого тела. Архитектор М.Ф. Казаков. Понятие золотого сечения. Деление отрезка. Золотое сечение в природе. Золотая спираль. Научный аппарат. Золотое сечение в архитектуре и искусстве. Золотой прямоугольник. Что такое золотое сечение.

    «Как найти скалярное произведение векторов» - Найдите скалярное произведение векторов. Квадрат. ABCD - квадрат. Вставьте пропущенное слово. Ав = вс = ас. Скалярное произведение. Выберите правильный ответ. Найдите стороны и углы треугольника. Стороны треугольника. Познакомить учащихся с теоремой о нахождении скалярного произведения векторов. Ав = вс = ас = 2. Скалярное произведение векторов. Угол между векторами. Заполните таблицу.

    «Виды и свойства треугольников» - Площадь треугольника. Задачи в координатах. Итоговое повторение геометрии. Свойства. Правильный треугольник. Треугольник. Проверь себя. Центр описанной окружности. Взаимное расположение треугольника и отрезков. Равнобедренный треугольник. Прямоугольный треугольник. Биссектриса.

    ««Треугольники» 9 класс» - Равнобедренный. Треугольники. Сумма углов треугольника. Прямоугольный. Биссектриса. Равносторонний. Средняя линия. Серединный перпендикуляр. Медиана. Треугольники. Тупоугольный – это треугольник у которого один из углов тупой. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Внешний угол. Высота.

    «Длина окружности и круг» - Найти длину окружности. Площадь круга. Вычислить. Найди радиус окружности. Закончите утверждение. Круг. Круговой сектор. Вычисли длину экватора. Длина окружности. Cамостоятельная работа. Окружность. Игра. Найти площадь заштрихованной фигуры. Начерти окружность с центром К и радиусом 2 см.

    «Вопросы по многогранникам» - Какая геометрическая фигура получится на срезе цилиндра. Прямоугольник. Получение некоторых тел Архимеда. V = abc. Высота цилиндра. Куб, параллелепипед, пирамида. Некоторые геометрические тела. Найдите объём аквариума, изображённого на рисунке. Какие предметы имеют цилиндрическую форму. Конус. Почему куб, параллелепипед, пирамиду вы отнесли к многогранникам. Мяч, глобус - это сферы. Шар, цилиндр, конус, усечённый конус.

    Четырёхугольник вписан в окружность (задачи). Продолжаем рассматривать задания входящие в состав ЕГЭ по математике. В этой статье мы решим несколько задач с использованием свойств вписанного угла. Теория была подробно уже изложена, . В указанной статье решение заданий по сути сводилось к применению свойства вписанного угла сразу же, то есть это были задания практически в одно действие. Здесь нужно чуть подумать, ход решения не всегда с ходу очевиден.

    Применяются: теорема о сумме углов треугольника, свойства вписанного угла, свойство четырёхугольника вписанного в окружность. О последнем подробнее.

    *Это свойство было уже представлено, но в другой интерпретации. Итак:


    Свойства:

    Вписанный четырехугольник - это четырехугольник, все вершины которого лежат на одной окружности.

    Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусам.

    То есть, если мы такой четырёхугольник, то сумма его противоположных углов равна 180 градусам.

    Рассмотрим задачи:

    27870. В окружности с центром O AC и BD - диаметры. Центральный угол AOD равен 110 0 . Найдите вписанный угол ACB . Ответ дайте в градусах.

    Треугольник B ОC равнобедренный, так как ОС=ОВ (это радиусы). Известно, что сумма углов треугольника равна 180 градусам. Рассмотрим ∠BOC и ∠AOD:

    Следовательно

    Углы при основании равнобедренного треугольника равны, то есть

    Другой способ:

    Угол АОВ является центральным углом для вписанного угла АСВ. По свойству вписанного в окружность угла

    Сумма смежных углов равна 180 0 , значит

    Таким образом

    Ответ: 35

    27871. Угол А четырехугольника ABCD, вписанного в окружность, равен 58 0 . Найдите угол C этого четырехугольника. Ответ дайте в градусах.

    Здесь достаточно вспомнить свойство такого четырёхугольника. Известно, что сумма его противоположных углов такого равна 180 градусам, значит угол С будет равен

    Второй способ:

    Построим ОВ и OD.

    По свойству вписанного угла градусная величина дуги BCD равна

    2∙58 0 = 116 0

    Следовательно градусная величина дуги BAD будет равна

    360 0 – 116 0 = 244 0

    По свойству вписанного угла угол С будет в два раза меньше, то есть 122 0 .

    Ответ: 122

    27872. Стороны четырехугольника ABCD AB , BC , CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно 95 0 , 49 0 , 71 0 , 145 0 . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

    Построим радиусы АО, OD, OC:

    Градусная величина дуги AD равна 145 0 , градусная величина дуги СD равна 71 0 , значит градусная величина дуги АDС равна 145 0 + 71 0 = 216 0 .

    По свойству вписанного угла угол В будет в два раза меньше центрального угла соответствующего дуге АDС, то есть

    Ответ: 108

    27874. Четырехугольник ABCD вписан в окружность. Угол ABC равен 105 0 , угол CAD равен 35 0 . Найдите угол ABD . Ответ дайте в градусах.

    Данная задача может вызвать затруднение. Сразу невозможно явно увидеть ход решения. Вспомним, что известно про вписанный четырёхугольник: сумма его противоположных углов равна 180 градусам. Найдём

    На данный момент мы нашли тот угол, который сразу же возможно определить по известному свойству. Если есть возможность найти какую-либо величину, сделайте это, пригодится. Действуем по принципу «находим то, что можно найти исходя из данных величин».

    Вписанные углы ABD и ACD опираются на одну и туже дугу, это означает, что они равны, то есть

    Ответ: 70

    27875. Четырехугольник ABCD вписан в окружность. Угол ABD равен 75 0 , угол CAD равен 35 0 . Найдите угол ABC . Ответ дайте в градусах.

    Известно, что вписанные углы опирающиеся на одну и ту же дугу, и лежащие от неё по одну сторону равны. Следовательно

    В треугольнике ACD известно два угла, можем найти третий: