Меню
Бесплатно
Главная  /  Отношения  /  Площадь правого пика равна где. Исследовательская работа "формула пика"

Площадь правого пика равна где. Исследовательская работа "формула пика"













































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Руководители:

  • Могутова Татьяна Михайловна
  • Дерюшкина Оксана Валерьевна

Девиз проекта:

“Если вы хотите научиться плавать, то смело входите в воду.
а если хотите научиться решать задачи, то решайте их”.
Д. Пойя.

Выбор темы проекта не случаен. Способы нахождения площади многоугольника нарисованного на “клеточках” очень интересная тема.

Мы знаем разные способы выполнения таких заданий: способ сложения, способ вычитания и др.

Нас очень заинтересовала эта тема, мы изучили много литературы и к нашей огромной радости нашли еще один способ, способ не известный по школьной программе, но способ замечательный! Вычисление площади, используя формулу, выведенную австрийским ученым – математиком Георгом Пиком.

Мы решили изучить формулу Пика, при помощи которой выполнять задания на нахождении площади очень легко!

Цель исследования

1. Изучение формулы Пика.

2. Расширение знаний о многообразии задач на клетчатой бумаге, о приёмах и методах решения этих задач.

Задачи:

1. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

2. Проанализировать и систематизировать полученную информацию

3. Создать электронную презентацию работы для представления собранного материала одноклассникам

4. Сделать выводы по результатам работы.

5. Подобрать наиболее интересные, наглядные примеры.

Методы исследования:

1. Моделирование

2. Построение

3. Анализ и классификация информации

4. Сравнение, обобщение

5. Изучение литературных и Интернет-ресурсов

Георг Пик – австрийский ученый – математик. Пик поступил в университет в Вене в 1875 году. Свою первую работу опубликовал в возрасте 17 лет. Круг его математических интересов был чрезвычайно широк. 67 его работ посвящены многим разделам математики, таким как: линейная алгебра, интегральное исчисление, геометрия, функциональный анализ, теория потенциала.

Широко известная Теорема появилась в сборнике работ Пика в 1899 году.

Теорема привлекла довольно большое внимание и начала вызывать восхищение своей простотой и элегантностью.

Формула Пика, формула вычисления площади многоугольника, изображенного на бумаге в клетку, полезна при решении заданий ЕГЭ и ОГЭ. Именно, поэтому, она нас очень заинтересовала.

Формула Пика - классический результат комбинаторной геометрии и геометрии чисел.

По теореме Пика площадь многоугольника равна:

Г: 2 + В – 1

Г – число узлов решетки на границе многоугольника

В – число узлов решетки внутри многоугольника.

Первым делом мы поставили задачу: изучить, что такое узлы решетки и как правильно вычислять их количество. Оказалось, это очень просто. Приведем несколько примеров.

Пусть дан произвольный треугольник. Узлы на границе изображены оранжевым цветом, узлы внутри изображены синим цветом. Найти узлы и подсчитать их количество очень легко.

В данном случае Г= 15, В = 35

Пример №2 Узлов на границе 18, т.е. Г = 18, узлов внутри 20, В = 20.

И еще один пример. Дан произвольный многоугольник. Считаем узлы на границе. Их 14. Узлом внутри многоугольника 43. Г = 14, В = 43.

С первой задачей мы справились!

Второй этап нашей работы: вычисление площадей многоугольников.

Рассмотрим несколько примеров.

Пример №1.

Г = 14, В = 43, S = + 43 – 1 = 49

Пример №2.

Г = 11, В = 5, S = + 5 – 1 = 9,5

Пример №3.

Г = 15, В = 22, S = + 22 – 1 = 28,5

Пример №4.

Г = 8, В = 16, S = + 16 – 1 = 19

Пример №5

Г = 10, В = 30, S = + 30 – 1 = 34

На рассмотрение пяти примеров мы затратили всего 1-2 минуты. Вычислять площадь по формуле Пика не только быстро, но и очень легко!

Но перед нами встал очень серьезный вопрос:

Можно ли доверять теореме Пика?

Получаются ли одинаковые результаты при вычислении площадей разными способами?

Найдем площади многоугольников по формуле Пика и обычным способом, применяя формулы геометрии и способы достроения или разбиения на части. Вот какие результаты мы получили:

Пример №1.

Вычислим площадь многоугольника по формуле Пика:

Подсчитаем количество узлов на границе и внутри. Г = 3, В = 6.

Вычислим площадь: S = 6 + - 1 = 6,5

Достроим многоугольник до прямоугольника. Площадь прямоугольника равна: 3 * 5 = 15, S? = = 3, S? = = 3 , S = = 2,5

S = 15-3-3-2,5 = 6,5

Результат одинаковый.

Пример №2.

Г = 4, В = 9, S = 9 + - 1 = 10

Достроим до прямоугольника.

Площадь прямоугольника равна: 5 * 4 = 20, S 1 = 2 * 1 = 2, S 2 = = 3,

S = = 2 , S = = 1,5, S = = 2,5

Площадь прямоугольника равна

S = 20 – 2 – 3 – 2 – 1,5 – 2,5 = 10

Мы снова получили одинаковые результаты.

Рассмотрим еще один пример.

Пример №3

Вычислим площадь по формуле Пика.

Г = 5, В = 6, S = 6 + - 1 = 7,5

Вычислим площадь, используя способ достроения.

Площадь прямоугольника равна 5·4 = 20

S 1 = 2 * 1 = 2, S 2 = = 1, S 3 = 2 * 1 = 2, S 4 = = 1, S 5 = = 1, S 6 = = 2,5

S = 20 – 2 -1– 2 – 1 – 1 – 2,5 – 3 = 7,5

Результат одинаковый.

В презентации мы рассмотрели три примера, но на самом деле мы рассмотрели очень много самых разных примеров. Результат всегда был один и тот же: Вычисление площади по формуле Пика и другими способами дает одинаковый результат.

Вывод: формуле Пика можно доверять! Она дает точный результат.

Мы довольны!

И еще один вопрос встал перед нами: какой способ вычисления наиболее рациональный, наиболее удобный для использования?

Чтобы ответить на этот вопрос, достаточно использовать всю предыдущую работу. Но рассмотрим еще три примера, которые окончательно позволят получить ответ на наш вопрос.

Пример №2

Пример №3

При помощи формулы Пика легко вычислить площадь многоугольника даже самой причудливой формы. Рассмотрим пример:

Вывод однозначный: наиболее рациональный способ вычисления площади многоугольника, изображенного на бумаге в клетку: формула Пика!

Предлагаем каждому из вас вычислить площадь многоугольника, используя формулу Пика:

Вычислите количество узлов на границе. Они изображены желтым цветом.

Вычислите количество узлов внутри, красный цвет.

Подставьте в формулу, назовите результат. Вы за одну минуту вычислили площадь.

Итак, формула Пика имеет ряд преимуществ перед другими способами вычисления площадей многоугольников на клетчатой бумаге:

Для вычисления площади многоугольника, нужно знать всего одну формулу:

S = Г:2 + В - 1.

Формула Пика очень проста для запоминания.

Формула Пика очень удобна и проста в применении.

Многоугольник, площадь которого необходимо вычислить, может быть любой, даже самой причудливой формы.

Применяя формулу Пика легко выполнять задание ЕГЭ и ОГЭ.

Приведем несколько примеров вычисления площади из вариантов ЕГЭ – 2015.

Мы решили научить пользоваться формулой Пика учащихся 9 – 11 классов нашей школы. Провели фестиваль “Формула Пика”.

Все учащиеся с большим интересом познакомились с презентацией, научились пользоваться формулой Пика.

За 30 минут практической работы учащиеся выполнили большое количество заданий. Каждый учащийся получил памятку “Формула Пика”.

Мы помогли им в подготовке к ЕГЭ и ОГЭ!

Спустя месяц работы, мы провели опрос учащихся 9–11 классом.

Задали следующие вопросы:

Вопрос №1:

Формула Пика – это рациональный способ вычисления площади многоугольника?

“Да” - 100% учащихся.

Вопрос №2:

Вы пользуетесь формулой Пика?

“Да” – 100% учащихся

Наша работа не прошла даром! Мы довольны!

Презентацию нашего проекта мы разместили в сети Интернет. Много просмотров и скачиваний нашей работы.

Мы оформили альбом “Формула Пика”. Им постоянно, особенно первое время, пользовались учащиеся нашей школы.

Результаты работы над проектом:

В процессе работы над проектом изучили справочную, научно-популярную литературу по теме исследования.

  • Изучили теорему Пика, научились находить площади фигур, изображенных на бумаге в клетку просто и рационально.
  • Расширили свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.
  • Провели для учащихся 9–11 фестиваль “Формула Пика”, научили их находить площадь, использую эту формулу. Подобрали много интересных примеров.
  • Создали электронную презентацию в помощь своим ровесникам.
  • Оформили альбом “Формула Пика”, который постоянно используют учащиеся школы.

Предлагает вам выполнить два задания, чтобы вы убедились в рациональности нашей работы.

Спасибо за внимания!

Старкова Кристина, ученица 8Б класса

В работе рассмотрена теорема Пика и ее доказательство.

Рассмотрены задачи на нахождение площади многоугольников

Скачать:

Предварительный просмотр:

УПРАВЛЕНИЕ ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

АДМИНИСТРАЦИИ ЧАЙКОВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

ПЕРМСКОГО КРАЯ

VI МУНИЦИПАЛЬНАЯ КОНФЕРЕНЦИЯ ИССЛЕДОВАТЕЛЬСКИХ РАБОТ
УЧАЩИХСЯ

Муниципальное автономное общеобразовательное учреждение

«средняя общеобразовательная школа №11»

СЕКЦИЯ: МАТЕМАТИКА

Применение формулы Пика

Учащаяся 8 «Б» класса

МАОУ СОШ №11Чайковский

Руководитель:Батуева Л,Н.,

Учитель математики МАОУ СОШ№11

г. Чайковский

2012 год

I. Введение……………………………………………………. 2

II. Формула Пика

2.1.Решетки.Узлы………………………………………… .4

2.2.Триангуляция многоугольника………………………5

2.3. Доказательство теоремы Пика………………………6

2.4 Исследование площадей многоугольников…………9

2.5. Вывод…………………………………………………..12

III.Геометрические задачи с практическим содержанием…13

IV. Заключение………………………………………………..14

V. Список используемой литературы………………………..16

  1. Введение

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встал вопрос есть ли задачи, отличные от задач рассмотренных в учебники геометрии. Это задачи на клетчатой бумаге. У нас возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. Увидев такие задачи в контрольно – измерительных материалах ЕГЭ и ГИА, решила обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры.

Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Не судите поспешно. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

Мы определили:

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

  1. Цель исследования: Вывести и проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

Для достижения поставленной цели предусматриваем решение следующих задач:

  1. Подобрать необходимую литературу
  2. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию
  3. Проанализировать и систематизировать полученную информацию
  4. Найти различные методы и приёмы решения задач на клетчатой бумаге
  5. Создать электронную презентацию работы для представления собранного материала одноклассникам

многообразие задач на бумаге в клеточку, их «занимательность», отсутствие общих правил и методов решения вызывают у школьников затруднения при их рассмотрении

  1. Гипотеза :. Площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по формуле планиметрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

II. Формула Пика

2.1.Решетки.Узлы.

Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты; множество всех точек пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки –узлами решетки.

Внутренние узлы многоугольника - красные.

Узлы на гранях многоугольника - синие.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

2.2.Триангуляция многоугольника

Любой многоугольник с вершинами в узлах сетки может быть триангулирован – разбит на «простые» треугольники.

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Рис. 1.37

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n – 2 (это разбиение – триангуляция с вершинами в вершинах n -угольника).

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный - любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница - связная ломаная без самопересечений, и он имеет ненулевую площадь).

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

2.3. Доказательство теоремы Пика.

Пусть В - число целочисленных точек внутри многоугольника, Г - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика : S=В+Г2-1

Пример. Для многоугольника на рисунке В=23 (желтые точки), Г=7, (синие точки, не забудем о вершинах!), поэтому квадратных единиц.

Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем В=0, Г=4 и .

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и . Имеем в этом случае,В=(а-1)(b-1) , Г=2a+2b, тогда по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и , рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая В=а-1)b-1 , 2 Г= Г=2a+2b 2 +с-1 и получаем, что 4)Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной. Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением . Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим B=MT=BM+BT+c-2 - число внутренних целочисленных точек нового многоугольника, Г=Г(М)+Г(T)-2(с-2)-2 - число граничных точек нового многоугольника. Из этих равенств получаем: BM+BT+c-2 , Г=Г(М)+Г(T)-2(с-2)-2 . Так как мы предположили, что теорема верна для и для по отдельности, то S(MT)+S(M)+S(T)=(В(М)+ ГМ2 -1)+В(T)+ ГT2 -1)=(В(М)+ В(T))+( ГМ2+ГT2)-2 =Г(MT)-(c-2)+ B(MT)+2(c-2)+22 -2= Г(MT)+ B(MT)2-1 .Тем самым, формула Пика доказана.

2.4 Исследование площадей многоугольников.

2) На клетчатой бумаге с клетками размером 1 см х 1 см изображен

треугольник.Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=12ah

Sтр.ABD=1/2 AD ∙ BD=1/2 ∙ 2 ∙ 1=1

Sтр.BDC=1/2 DC ∙ BD=1/2 ∙ 3 ∙ 1=1,5

Sтр.ABC=Sтр.BDC-Sтр.ABD=

1,5-1=0,5

S= В+Г2-1

Г=3 ;В=0.

S=0+3/2-1=0,5

3)На клетчатой бумаге с клетками размером 1 см х 1 см изображен четырех- угольник. Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=a∙b

Sкв.KMNE=7 ∙ 7=49

Sтр.AKB=1/2 ∙ KB ∙ AK=1/2 ∙ 4 ∙ 4=8

Sтр.AKB=Sтр.DCE=8

Sтр.AND= 1/2 ∙ ND ∙ AN=1/2 ∙ 3 ∙ 3=4,5

Sтр.AND=Sтр.BMC=4,5

Sпр.= Sкв.KMNE- Sтр.AKB- Sтр.DCE- Sтр.AND- Sтр.BMC=49-8-8-4,5-4,5=24

S= В+Г2-1

Г=14;В=19.

S=18+14/2-1=24

4)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 7 ∙1= 3,5

S2= 12a∙ b=1/2 ∙ 7 ∙ 2=7

S3= 12a∙ b=1/2 ∙ 4 ∙ 1=2

S4= 12a∙ b=1/2 ∙ 5 ∙ 1=2,5

S5=a²=1²=1

Sкв.= a²=7²=49

S=49-3.5-7-2-2,5-1=32см²

S= В+Г2-1

Г=5;В=31.

S=31+ 42 -1=32см²

5)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах.

S= a ∙b

a=36+36=62

b=9+9=32

S= 62∙32 =36 см 2

S= В+Г2-1

Г=18, В=28

S=28+ 182 -1=36см 2

6)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S=4,5+18+4,5=27 см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

7)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S4= 12a∙ b=1/2 ∙ 6 ∙ 6=18

Sкв.=9²=81см²

S=81-4,5-18-4,5-18=36см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

8)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 2 ∙ 4=4

S2= 12ah =1/2 ∙ 4 ∙ 4=8

S3= 12ah =1/2 ∙ 8 ∙ 2=8

S4= 12ah =1/2 ∙ 4 ∙ 1=2

Sпр.= a∙ b=6 ∙ 8=48

S5=48-4-8-8-2=24 см²

S= Г+В2-1

Г=16;В=17.

S=17+ 162 -1=24 см²

Вывод

  1. Сравнив результаты в таблицах и доказав теорему Пика,я пришла к выводу,что площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по выведенной формуле планиметрии

Итак, моя гипотеза оказалась верной

III.Геометрические задачи с практическим содержанием.

Поможет нам формула Пика и для решения геометрических задач с практическим содержанием.

Задача 9 . Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м (рис. 10)

Решение.

Рис. 10 В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача 10 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м. (рис. 11)

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

Рис. 11 1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Заключение

В процессе исследования я изучила справочную, научно-популярную литературу, научилась работать в программе Notebook. Узнала, что

Задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные н задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

Литература

1.Геометрия на клетчатой бумаге. Малый МЕХмат МГУ.

2.Жарковская Н. М., Рисс Е. А . Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

3.Задачи открытого банка заданий по математике ФИПИ, 2010 – 2011

4.В.В.Вавилов, А.В.Устинов.Многоугольники на решетках.М.МЦНМО,2006.

5.Мтематические этюды. etudes.ru

6.Л.С.Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др.Геометрия.7-9 классы.М. Просвещение,2010

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Я, ученик 6 класса. Изучать геометрию начал ещё с прошлого года, ведь занимаюсь я в школе по учебнику «Математика. Арифметика. Геометрия» под редакцией Е.А. Бунимович, Л.В.Кузнецова, С.С. Минаева и другие.

Наибольшее мое внимание привлекли темы «Площади фигур», « Составление формул». Я заметил, что площади одних и тех же фигур можно находить различными способами. В быту мы часто сталкиваемся с задачами нахождения площади. Например, найти площадь пола, который придется покрасить. Любопытно ведь, чтобы купить необходимое количество обоев для ремонта, нужно знать размеры комнаты, т.е. площадь стен. Вычисление площади квадрата, прямоугольника и прямоугольного треугольника не вызывало у меня затруднений.

Заинтересовавшись этой темой, я начал искать дополнительный материал в Интернете. В результате поисков я натолкнулся на формулу Пика- это формула для вычисления площади многоугольника, нарисованного на клетчатой бумаге. Вычисление площади по этой формуле мне показалось доступным любому ученику. Именно поэтому я решил провести исследовательскую работу.

Актуальность темы:

    Данная тема является дополнением и углублением изучения курса геометрии.

    Изучение данной темы поможет лучше подготовиться к олимпиадам и экзаменам.

Цель работы:

    Ознакомиться с формулой Пика.

    Овладеть приемами решений геометрических задач с использованием формулы Пика.

    Систематизировать и обобщить теоретический и практический материалы.

Задачи исследования:

    Проверить эффективность и целесообразность применения формулы при решении задач.

    Научиться применять формулу Пика в задачах разной сложности.

    Сравнить задачи, решенные с помощью формулы Пика и традиционным способом.

Основная часть

1.1. Историческая справка

Георг Алекса́ндр Пик - австрийский математик, родился 10 августа 1859 года. Он был одарённым ребёнком, его обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в Венский университет. В 20 лет получил право преподавать физику и математику. Всемирную известность ему принесла формула для определения площади решетки полигонов. Свою формулу он опубликовал в статье в 1899 году. Она стала популярной, когда польский ученый Хьюго Штейнгауз включил ее в 1969 году в издание математических снимков.

Георг Пик получил образование в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско- Фердинандском университете в Праге. Там же он стал преподавателем. Он оставался в Праге до своей отставки в 1927 году, а затем вернулся в Вену.

Пик возглавлял комитет в немецком университете Праги, который назначил Эйнштейна профессором кафедры математической физики в 1911 году.

Он был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги.

Когда нацисты вошли в Австрию 12 марта 1938 года, он вернулся Прагу. В марте 1939 года нацисты вторглись в Чехословакию. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

1.2. Исследование и доказательство

Свою исследовательскую работу я начал с выяснения вопроса: площади каких фигур я смогу найти? Составить формулу для вычисления площади различных треугольников и четырехугольников я мог. А как же быть с пяти-, шести-, и вообще с многоугольниками?

В ходе исследования на различных сайтах я увидел решения задач на вычисление площади пяти-, шести-, и других многоугольников. Формула, позволяющая решать данные задачи, называлась формулой Пика. Она выглядит так:S=B+Г/2-1 , где В - количество узлов, лежащих внутри многоугольника, Г - количество узлов, лежащих на границе многоугольника. Особенность данной формулы состоит в том, что её можно применять только для многоугольников, нарисованных на клетчатой бумаге.

Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны ½, а следовательно, площадь многоугольника равна половине их числа Т.

Чтобы найти это число, обозначим через n число сторон многоугольника, через В - число узлов внутри него,через Г - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна 180°. Т.

Теперь найдем сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 2.180°, т.е. общая сумма углов равна 360°. В; общая сумма углов при узлах на сторонах, но не в вершинах равна (Г- n)180 °, а сумма углов при вершинах многоугольника будет равна (Г- 2)180 °. Таким образом, Т= 2.180°. В+(Г-n)180 °+(n-2)180 °. Выполнив раскрытие скобок и разделив на 360°, получаем формулу для площади S многоугольника, известную как формула Пика.

2. Практическая часть

Эту формулу решил проверить на заданиях из сборника ОГЭ-2017. Взял задачи на вычисление площади треугольника, четырехугольника и пятиугольника. Решил сравнить ответы, решая двумя способами: 1) дополнил фигуры до прямоугольника и из площади полученного прямоугольника вычел площадь прямоугольных треугольников; 2) применил формулу Пика.

S = 18-1,5-4,5 = 12 и S = 7+12/2-1= 12

S = 24-9-3 = 12 и S = 7+12/2-1 = 12

S = 77-7,5-12-4,5-4 =49 и S = 43+14/2-1 = 49

Сравнив полученное, делаю вывод, что обе формулы дают один и тот же ответ. Найти площадь фигуры по формуле Пика, оказалось быстрее и легче, ведь вычислений было меньше. Легкость решения и экономия времени на вычислениях мне пригодятся в будущем при сдаче ОГЭ.

Это подтолкнуло меня на проверку возможности применения формулы Пика на более сложных фигурах.

S = 0 + 4/2 -1 = 1

S = 5+11/2-1 = 9,5

S = 4+16/2-1 = 1

Заключение

Формула Пика проста в понимании и удобна в применении. Во-первых, достаточно уметь считать, делить на 2, складывать и вычитать. Во-вторых, можно найти площадь и сложной фигуры, не затратив много времени. В-третьих, эта формула работает для любого многоугольника.

Недостаток в том, что Формула Пика применима только для фигур, которые нарисованы на клетчатой бумаге и вершины лежат на узлах клеток.

Я уверен, что при сдаче выпускных экзаменов, задачи на вычисление площади фигур не будут вызывать затруднения. Ведь я уже знаком с формулой Пика.

Список литературы

    Бунимович Е.А., Дорофеев Г.В., Суворова С.Б. и др. Математика. Арифметика. Геометрия. 5 класс: учебн. для общеобразоват. организаций с прил. на электрон. носителе -3-е изд.-М.: Просвещение, 2014.- 223, с. : ил. - (Сферы).

    Бунимович Е.А., Кузнецова Л.В., Минаева С.С. и др. Математика. Арифметика. Геометрия. 6 класс: учебн. для общеобразоват. организаций-5-е изд.-М.: Просвещение, 2016.-240с. : ил.- (Сферы).

    Васильев Н.Б. Вокруг формулы Пика. //Квант.- 1974.-№2. -с.39-43

    Рассолов В.В. Задачи по планиметрии. / 5- изд.,испр. И доп. - М.: 2006.-640с.

    И.В. Ященко.ОГЭ. Математика: типовые экзаменационные варианты: О-39 36 вариантов - М.: Издательство «Национальное образование», 2017. -240 с. - (ОГЭ. ФИПИ- школе).

    «Решу ОГЭ»: математика. Обучающая система Дмитрия Гущина. ОГЭ-2017: задания, ответы, решения [Электронный ресурс]. Режим доступа: https://oge.sdamgia.ru/test?id=6846966 (дата обращения 02.04.2017)

Существует замечательная формула, которая позволяет считать площадь многоугольника на координатной сетке почти без ошибок. Это даже не формула, а настоящая теорема . На первый взгляд, она может показаться сложной. Но достаточно решить пару задач - и вы поймете, насколько это крутая фишка. Так что вперед!

Для начала введем новое определение:

Узел координатной стеки - это любая точка, лежащая на пересечении вертикальных и горизонтальных линий этой сетки.

Обозначение:

На первой картинке узлы вообще не обозначены. На второй обозначены 4 узла. Наконец, на третьей картинке обозначены все 16 узлов.

Какое отношение это имеет к задаче B5? Дело в том, что вершины многоугольника в таких задачах всегда лежат в узлах сетки. Как следствие, для них работает следующая теорема:

Теорема. Рассмотрим многоугольник на координатной сетке, вершины которого лежат в узлах этой сетки. Тогда площадь многоугольника равна:

где n - число узлов внутри данного многоугольника, k - число узлов, которые лежат на его границе (граничных узлов).

В качестве примера рассмотрим обычный треугольник на координатной сетке и попробуем отметить внутренние и граничные узлы.

На первой картинке дан обычный треугольник. На второй отмечены его внутренние узлы, число которых равно n = 10. На третей картинке отмечены узлы лежащие на границе, их всего k = 6.

Возможно, многим читателям непонятно, как считать числа n и k . Начните с внутренних узлов. Тут все очевидно: закрашиваем треугольник карандашом и смотрим, сколько узлов попало под закраску.

С граничными узлами чуть сложнее. Граница многоугольника - замкнутая ломаная , которая пересекает координатную сетку во многих точках. Проще всего отметить какую-нибудь «стартовую» точку, а затем обойти остальные.

Граничными узлами будут только те точки на ломаной, в которых одновременно пересекаются три линии :

  1. Собственно, ломаная;
  2. Горизонтальная линия координатной сетки;
  3. Вертикальная линия.

Посмотрим, как все это работает в настоящих задачах.

Задача. Найдите площадь треугольника, если размер клетки равен 1 x 1 см:

Для начала отметим узлы, которые лежат внутри треугольника, а также на его границе:


Получается, что внутренний узел всего один: n = 1. Граничных узлов - целых шесть: три совпадают с вершинами треугольника , а еще три лежат на сторонах. Итого k = 6.

Теперь считаем площадь по формуле:

Вот и все! Задача решена.

Задача. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см. Ответ дайте в квадратных сантиметрах.

Снова отмечаем внутренние и граничные узлы. Внутренних узлов всего n = 2. Граничных узлов: k = 7, из которых 4 являются вершинами четырехугольника , а еще 3 лежат на сторонах.

Остается подставить числа n и k в формулу площади:

Обратите внимание на последний пример. Эту задачу реально предлагали на диагностической работе в 2012 году. Если работать по стандартной схеме, придется делать много дополнительных построений. А методом узлов все решается практически устно.

Важное замечание по площадям

Но формула - это еще не все. Давайте немного перепишем формулу, приведя слагаемые в правой части к общему знаменателю . Получим:

Числа n и k - это количество узлов, они всегда целые. Значит, весь числитель тоже целый. Мы делим его на 2, из чего следует важный факт:

Площадь всегда выражается целым числом или дробью . Причем в конце дроби всегда стоит «пять десятых»: 10,5; 17,5 и т.д.

Таким образом, площадь в задаче B5 всегда выражается целым числом или дробью вида ***,5. Если ответ получается другим, значит, где-то допущена ошибка. Помните об этом, когда будете сдавать настоящий ЕГЭ по математике!

Формула Пика

Сажина Валерия Андреевна, учащаяся 9 класса МАОУ «СОШ№11» г Усть-Илимск Иркутской области

Руководитель: Губарь Оксана Михайловна, учитель математики высшей квалификационной категории МАОУ «СОШ№11» г Усть-Илимск Иркутской области

2016 год

Введение

При изучении темы геометрии «Площади многоугольников», я решила узнать: существует ли способ нахождения площадей, отличный от тех, которые мы изучали на уроках?

Таким способом является формула Пика. Л. В. Горина в «Материалах для самообразования учащихся» так описывала данную формулу: «Ознакомление с формулой Пика особенно актуально накануне сдачи ЕГЭ и ГИА. С помощью этой формулы можно без проблем решать большой класс задач, предлагаемых на экзаменах, - это задачи на нахождение площади многоугольника, изображённого на клетчатой бумаге. Маленькая формула Пика заменит целый комплект формул, необходимых для решения таких задач. Формула Пика будет работать «одна за всех…»!».

В материалах ЕГЭ мне встретились задачи с практическим содержанием на нахождение площади земельных участков. Я решила проверить, применима ли данная формула для нахождения площади территории школы, микрорайонов города, области. А так же рационально ли ее применение для решения задач.

Объект исследования: формула Пика.

Предмет исследования: рациональность применение формулы Пика при решении задач.

Цель работы: обосновать рациональность использования формулы Пика при решении задач на нахождение площади фигур, изображённых на клетчатой бумаге.

Методы исследования: моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

Подобрать необходимую литературу, проанализировать и систематизировать полученную информацию;

Рассмотреть различные методы и приёмы решения задач на клетчатой бумаге;

Проверить экспериментальным путем рациональность использования формулы Пика;

Рассмотреть применение данной формулы.

Гипотеза: если применить формулу Пика для нахождения площадей многоугольника, то можно найти площадь территории, а решение задач на клетчатой бумаге будет более рационально.

Основная часть

Теоретическая часть

Клетчатая бумага (точнее - ее узлы), на которой мы часто предпочитаем рисовать и чертить, является одним из важнейших примеров точечной решетки на плоскости. Уже эта простая решетка послужила К. Гауссу отправной точкой для сравнения площади круга с числом точек с целыми координатами, находящихся внутри него. То, что некоторые простые геометрические утверждения о фигурах на плоскости имеют глубокие следствия в арифметических исследованиях, было в явном виде замечено Г. Минковским в 1896 г., когда он впервые для рассмотрения теоретико-числовых проблем привлек геометрические методы .

Нарисуем на клетчатой бумаге какой-нибудь многоугольник (Приложение 1, рисунок 1). Попробуем теперь рассчитать его площадь. Как это сделать? Наверное, проще всего разбить его на прямоугольные треугольники и трапецию, площади которых уже нетрудно вычислить и сложить полученные результаты.

Использованный способ несложен, но очень громоздок, кроме того он годится не для всяких многоугольников. Так следующий многоугольник нельзя разбить на прямоугольные треугольники, так как мы это проделали в предыдущем случае (Приложение 2, рисунок 2). Можно, например, попробовать дополнить его до «хорошего», нужного нам, то есть до такого, площадь которого мы сможем вычислить описанным способом, потом из полученного числа вычесть площади добавленных частей.

Однако оказывается, что есть очень простая формула, позволяющая вычислить площади таких многоугольников с вершинами в узлах квадратной сетки.

Эту формулу открыл австрийский математик Пик Георг Александров (1859 – 1943 г.г.) в 1899 году. Кроме этой формулы Георг Пик открыл теоремы Пика, Пика – Жюлиа, Пика – Невалины, доказал неравенство Шварца – Пика.

Эта формула оставалась незамеченной в течение некоторого времени после того, как Пик её опубликовал, однако в 1949 г. польский математик Гуго Штейнгауз включил теорему в свой знаменитый «Математический калейдоскоп». С этого времени теорема Пика стала широко известна. В Германии формула Пика включена в школьные учебники.

Она является классическим результатом комбинаторной геометрии и геометрии чисел.

Доказательство формулы Пика

Пусть АВСD – прямоугольник с вершинами в узлах и сторонами, идущими по линиям сетки (Приложение 3, рисунок 3).

Обозначим через В - количество узлов, лежащих внутри прямоугольника, а через Г - количество узлов на его границе. Сместим сетку на полклетки вправо и полклетки

вниз. Тогда территорию прямоугольника можно «распределить» между узлами следующим образом: каждый из В узлов «контролирует» целую клетку смещённой сетки, а каждый из Г узлов – 4 граничных не угловых узла – половину клетки, а каждая из угловых точек – четверть клетки. Поэтому площадь прямоугольника S равна

S = В + + 4 · = В + - 1 .

Итак, для прямоугольников с вершинами в узлах и сторонами, идущими по линиям сетки, мы установили формулу S = В + - 1 . Это и есть формула Пика.

Оказывается, эта формула верна не только для прямоугольников, но и для произвольных многоугольников с вершинами в узлах сетки.

Практическая часть

Нахождение площади фигур геометрическим методом и по формуле Пика

Я решила убедиться в том, что формула Пика верна для всех рассмотренных примеров.

Оказывается, что если многоугольник можно разрезать на треугольники с вершинами в узлах сетки, то для него верна формула Пика.

Я рассмотрела некоторые задачи на клетчатой бумаге с клетками размером 1 см1 см и провела сравнительный анализ по решению задач (Таблица№1).

Таблица№1 Решение задач различными способами.

Рисунок

По формуле геометрии

По формуле Пика

Задача №1

S=S пр -(2S 1 +2S 2 )

S пр =4*5=20 см 2

S 1 =(2*1)/2=1 см 2

S 2 =(2*4)/2=4 см 2

S=20-(2*1+2*4)=10 см 2

Ответ :10 см ².

В = 8, Г = 6

S = 8 + 6/2 – 1 = 10 (см²)

Ответ: 10 см².

Задача №2

a=2, h=4

S=a*h=2*4=8 см 2

Ответ : 8 см ².

В = 6, Г = 6

S = 6 + 6/2 – 1 = 8 (см²)

Ответ: 8 см².

Задача №3

S=S кв -(S 1 +2S 2 )

S кв =4 2 =16 см 2

S 1 =(3*3)/2=4,5см 2

S 2 =(1*4)/2=2см 2

S =16-(4,5+2*2)=7.5 см 2

В = 6, Г = 5

S = 6 + 5/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Задача №4

S=S пр -(S 1 +S 2+ S 3 )

S пр =4 * 3=12 см 2

S 1 =(3*1)/2=1,5 см 2

S 2 =(1*2)/2=1 см 2

S 3 =(1+3)*1/2=2 см 2

S=12-(1,5+1+2)=7.5 см 2

В = 5, Г = 7

S = 5 + 7/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Задача № 5.

S=S пр -(S 1 +S 2+ S 3 )

S пр =6 * 5=30 см 2

S 1 =(2*5)/2=5 см 2

S 2 =(1*6)/2=3 см 2

S 3 =(4*4)/2=8 см 2

S=30-(5+3+8)=14 см 2

Ответ: 14 см²

В = 12, Г = 6

S = 12 + 6/2 – 1 = 14 (см²)

Ответ: 14 см²

Задача №6.

S тр =(4+9)/2*3=19,5 см 2

Ответ: 19,5 см 2

В = 12, Г = 17

S = 12 + 17/2 – 1 = 19,5 (см²)

Ответ: 19,5 см 2

Задача №7. Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м

S= S 1 +S 2+ S 3

S 1 =(800*200)/2=80000 м 2

S 2 =(200*600)/2=60000 м 2

S 3 =(800+600)/2*400=

280000 м 2

S= 80000+60000+240000=

420000м 2

Ответ: 420 000 м²

В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача №8 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе

1 см – 200 м.

S = S кв -2(S тр + S трап )

S кв =800 * 800=640000 м 2

S тр =(200*600)/2=60000м 2

S трап =(200+800)/2*200=

100000м 2

S =640000-2(60000+10000)=

320000 м 2

Ответ: 320 000 м²

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Задача №9 . Найдите площадь S сектора, считая стороны квадратных клеток равными 1. В ответе укажите .

Сектор является одной четвертой частью круга и, следовательно, его площадь равна одной четвертой площади круга. Площадь круга равна π R 2 , где R – радиус круга. В нашем случае R =√5 и, следовательно, площадь S сектора равна 5π/4. Откуда S /π=1,25.

Ответ. 1,25.

Г= 5, В= 2, S = В + Г/2 – 1= 2 + 5/2 – 1= 3,5, ≈ 1,11

Ответ. 1,11.

Задача №10. Найдите площадь S кольца, считая стороны квадратных клеток равными 1. В ответе укажите .

Площадь кольца равна разности площадей внешнего и внутреннего кругов. Радиус R внешнего круга равен

2 , радиус r внутреннего круга равен 2. Следовательно, площадь кольца равна 4 и, следовательно, . Ответ:4.

Г= 8, В= 8, S = В + Г/2 – 1= 8 + 8/2 – 1=11, ≈ 3,5

Ответ:3,5

Выводы: Рассмотренные задания аналогичны заданию из вариантов контрольно-измерительных материалов ЕГЭ по математике (задачи №5,6),.

Из рассмотренных решений задач я увидела, что некоторые из них, например задачи № 2,6, легче решить, применяя геометрические формулы, так как высоту и основание можно определить по рисунку. Но в большинстве задач требуется разбиение фигуры на более простые (задача №7) или достраивание до прямоугольника (задачи №1,4,5), квадрата (задачи №3,8).

Из решения задач №9 и №10 я увидела, что применение формулы Пика к фигурам, которые не являются многоугольниками, даёт приближённый результат.

Для того, чтобы проверить рациональность применения формулы Пика, я провела исследование на предмет затраченного времени (Приложение 4, таблица №2).

Вывод: из таблицы и диаграммы (Приложение 4, диаграмма 1) видно, что при решении задач с помощью формулы Пика, времени затрачивается гораздо меньше.

Нахождение площади поверхности пространственных форм

Проверим применимость этой формулы к пространственным формам (Приложение 5, рисунок 4).

Найти площадь полной поверхности прямоугольного параллелепипеда, считая стороны квадратных клеток равными 1.

Это недостаток формулы.

Применение формулы Пика для нахождения площади территории

Решая задачи с практическим содержанием, (задачи №7,8; таблица №1), я решила применить данный способ для нахождения площади территории нашей школы, микрорайонов города Усть-Илимска, Иркутской области.

Ознакомившись с «Проектом границ земельного участка МАОУСОШ№11 г.Усть-Илимска» (Приложение 6),, я нашла площадь территории нашей школы и сравнила с площадью по проекту границ земельного участка (Приложение 9, таблица 3).

Рассмотрев карту правобережной части Усть-Илимска (Приложение 7),, я вычислила площади микрорайонов и сравнила с данными из «Генерального плана г. Усть-Илимска Иркутской области». Результаты представила в таблице (Приложение 9, таблица 4).

Рассмотрев карту Иркутской области (Приложение 7),, я нашла площадь территории и сравнила с данными из Википедии . Результаты представила в таблице (Приложение 9, таблица 5).

Проанализировав результаты, я пришла к выводу: по формуле Пика эти площади можно найти гораздо проще, но результаты приблизительные.

Из проведенных исследований наиболее точное значение я получила при нахождении площади территории школы (Приложение 10, диаграмма 2). Большее расхождение в результатах получилось при нахождении площади Иркутской области (Приложение 10, диаграмма 3). Это связано с тем. Что не все границы области являются сторонами многоугольников, и вершины не являются узловыми точками.

Заключение

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определила для себя классификацию исследуемых задач.

При выполнении работы были решены задачи на нахождение площади многоугольников, изображённых на клетчатой бумаге двумя способами: геометрическим и с помощью формулы Пика.

Анализ решений и эксперимент по определению затраченного времени показал, что применение формулы даёт возможность решать задачи на нахождение площади многоугольника, более рационально. Это позволяет экономить время на ЕГЭ по математике.

Нахождение площади различных фигур, изображённых на клетчатой бумаге, позволило сделать вывод, что использование формулы Пика для вычисления площади кругового сектора и кольца нецелесообразно, так как она даёт приближённый результат, и, что формула Пика не применяется для решения задач в пространстве.

Так же в работе были найдены площади различных территорий по формуле Пика. Можно сделать вывод: использование формулы для нахождения площади различных территорий возможно, но результаты получаются приблизительными.

Выдвинутая мной гипотеза подтвердилась.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому я решила продолжить работу в этом направлении.

Литература

    Волков С.Д.. Проект границ земельного участка, 2008 г, с. 16.

    Горина Л.В., Математика. Все для учителя, М:Наука, 2013 г.. №3, с. 28.

    Прокопьева В.П., Петров А.Г., Генеральный план города Усть-Илимска Иркутской области, Госстрой России, 2004 г.. с. 65.

    Рисс Е. А. , Жарковская Н. М. , Геометрия клетчатой бумаги. Формула Пика. - Москва, 2009, № 17, с. 24-25.

    Смирнова И. М. ,. Смирнов В. А, Геометрия на клетчатой бумаге. – Москва, Чистые пруды, 2009, с. 120.

    Смирнова И. М. , Смирнов В. А. , Геометрические задачи с практическим содержанием. – Москва, Чистые пруды, 2010, с. 150

    Задачи открытого банка заданий по математике ФИПИ, 2015.

    Карта города Усть-Илимска.

    Карта Иркутской области.

    Википедия.