Меню
Бесплатно
Главная  /  Отношения  /  Валентность и степень окисления химических элементов. Электроотрицательность, степень окисления и валентность химических элементов

Валентность и степень окисления химических элементов. Электроотрицательность, степень окисления и валентность химических элементов

ОПРЕДЕЛЕНИЕ

Способность атома к образованию химических связей называют валентностью . Количественной мерой валентности принято считать число разных атомов в молекуле, с которыми данный элемент образует связи.

Согласно обменному механизму метода валентных связей, валентность химических элементов определяется числом содержащихся в атоме неспаренных электронов. Для s- и p-элементов - это электроны внешнего уровня, для d-элементов - внешнего и предвнешнего уровней.

Значения высшей и низшей валентностей химического элемента можно определить при помощи Периодической таблицы Д.И. Менделеева. Высшая валентность элемента совпадает с номером группы, в которой он расположен, а низшая представляет собой разность между числом 8 и номером группы. Например, бром расположен в VIIA группе, значит его высшая валентность равна VII, а низшая - I.

Спаренные (расположенные по два на атомных орбиталях) электроны при возбуждении могут разъединяться при наличии свободных ячеек того же уровня (разъединение электронов в какой-либо уровень невозможно). Рассмотрим на примере элементов Iи II групп. Например, валентность элементов главной подгруппы I группы равна единице, так ка на внешнем уровне атомы этих элементов имеют один электрон:

3 Li 1s 2 2s 1

Валентность элементов главной подгруппы II группы в основном (невозбужденном) состоянии равна нулю, так как на внешнем энергетическом уровне нет неспаренных электронов:

4 Be 1s 2 2 s 2

При возбуждении этих атомов спаренные s-электроны разъединяются в свободные ячейки p-подуровня этого же уровня и валентность становится равной двум (II):

Степень окисления

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

ОПРЕДЕЛЕНИЕ

Число электронов, смещенных от атома данного элемента или к атому данного элемента в соединении называют степенью окисления .

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная - число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Понятие степени окисления для большинства соединений имеет условных характер, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.

Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральныхмолекуах равна нулю, а в сложных ионах - заряду этих ионов. В качестве примера рассчитаем степень окисления азота в соединениях состава KNO 2 и HNO 3 . Степень окисления водорода и щелочных металлов в соединениях равна (+), а степень окисления кислорода - (-2). Соответственно степень окисления азота равна:

KNO 2 1+ x + 2 × (-2) = 0, x=+3.

HNO 3 1+x+ x + 3 × (-2) = 0, x=+5.

Примеры решения задач

ПРИМЕР 1

Задание Валентность IV характерна для: а)Ca; б) P; в) O; г)Si?
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем рассматривать каждый из предложенных вариантов в отдельности.

а) Кальций - металл. Характеризуется единственно возможным значением валентности, совпадающим с номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. валентность кальция равна II. Ответ неверный.

б) Фосфор - неметалл. Относится к группе химических элементов с переменной валентностью: высшая определяется номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. равна V, а низшая -разностью между числом 8 и номером группы, т.е. равна III. Ответ неверный.

в) Кислород — неметалл. Характеризуется единственно возможным значением валентности равным II. Ответ неверный.

г) Кремний — неметалл. Характеризуется единственно возможным значением валентности, совпадающим с номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. валентность кремния равна IV. Это верный ответ.

Ответ Вариант (г)

ПРИМЕР 2

Задание Какую валентность имеет железо в соединении, которое образуется при его взаимодействии с соляной кислотой: а)I; б) II; в) III; г) VIII?
Решение Запишем уравнение взаимодействия железа с соляной кислотой:

Fe + HCl = FeCl 2 + H 2 .

В результате взаимодействия образуется хлорид железа и выделяется водород. Чтобы определить валентность железа по химической формуле, сначала считаем количество атомов хлора:

Вычисляем общее число единиц валентности хлора:

Определяем число атомов железа: оно равно 1. Тогда валентность железа в его хлориде будет равна:

Ответ Валентность железа в соединении, образовавшемся при его взаимодействии с соляной кислотой равна II.

Видеоурок 2: Степень окисления химических элементов

Видеоурок 3: Валентность. Определение валентности

Лекция: Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность


Электроотрицательность – это способность атомов притягивать к себе электроны других атомов для соединения с ними.

Судить об электроотрицательности того или иного химического элемента легко по таблице. Вспомните, на одном из наших уроков было сказано о том, что она возрастает при движении слева направо по периодам в таблице Менделеева и с перемещением снизу вверх по группам.

К примеру, дано задание определить какой элемент из предложенного ряда наиболее электроотрицателен: C (углерод), N (азот), O (кислород), S (сера)? Смотрим по таблице и находим, что это О, потому что он правее и выше остальных.


Какие же факторы оказывают влияние на электроотрицательность? Это:

  • Радиус атома, чем он меньше, тем электроотрицательность выше.
  • Заполненность валентной оболочки электронами, чем их больше, тем выше электроотрицательность.

Из всех химических элементов фтор является наиболее электроотрицательным, потому как у него малый атомный радиус и на валентной оболочке 7 электронов.


К элементам, имеющим низкую электроотрицательность, относятся щелочные и щелочноземельные металлы. У них большие радиусы и очень мало электронов на внешней оболочке.

Значения электроотрицательности атома не могут быть постоянными, т.к. она зависит от многих факторов в числе которых перечисленные выше, а также степень окисления, которая может быть различной у одного и того же элемента. Поэтому принято говорить об относительности значений электроотрицательности. Вы можете пользоваться следующими шкалами:




Значения электроотрицательности вам понадобятся при записи формул бинарных соединений, состоящих из двух элементов. К примеру, формула оксида меди Cu 2 O - первым элементом следует записывать тот, чья электроотрицательность ниже.


В момент образования химической связи если разница электроотрицательности между элементами больше 2,0 образуется ковалентная полярная связь, если меньше, ионная.

Степень окисления

Степень окисления (СО) – это условный или реальный заряд атома в соединении: условный – если связь ковалентная полярная, реальный – если связь ионная.

Атом приобретает положительный заряд при отдаче электронов, а отрицательный заряд – при принятии электронов.

Степени окисления записываются над символами со знаком «+»/«-» . Есть и промежуточные СО. Максимальная СО элемента положительная и равна № группы, а минимальная отрицательная для металлов равна нулю, для неметаллов = (№ группы – 8) . Элементы с максимальной СО только принимают электроны, а с минимальной, только отдают. Элементы же, имеющие промежуточные СО могут и отдавать и принимать электроны.


Рассмотрим некоторые правила, которыми стоит руководствоваться для определения СО:

    СО всех простых веществ равна нулю.

    Равна нулю и сумма всех СО атомов в молекуле, так как любая молекула электронейтральна.

    В соединениях с ковалентной неполярной связью СО равна нулю (О 2 0), а с ионной связью равна зарядам ионов (Na + Cl - СО натрия +1, хлора -1). СО элементов соединений с ковалентной полярной связью рассматриваются как с ионной связью (H:Cl = H + Cl - , значит H +1 Cl -1).

    Элементы в соединении, имеющие наибольшую электроотрицательность, имеют отрицательные степени окисления, если наименьшую положительные. Исходя из этого можно сделать вывод, что металлы имеют только «+» степень окисления.

Постоянные степени окисления :

    Щелочные металлы +1.

    Все металлы второй группы +2. Исключение: Hg +1, +2.

    Алюминий +3.

  • Водород +1. Исключение: гидриды активных металлов NaH, CaH 2 и др., где степень окисления водорода равна –1.

    Кислород –2. Исключение: F 2 -1 O +2 и пероксиды, которые содержат группу –О–О–, в которой степень окисления кислорода равна –1.

Когда образуется ионная связь, происходит определенный переход электрона, от менее электроотрицательного атома к атому большей электроотрицательности. Так же, в данном процессе, атомы всегда теряют электронейтральность и впоследствии превращаются в ионы. Так же образуются целочисленные заряды. При образовании ковалентной полярной связи, электрон переходит только частично, поэтому возникают частичные заряды.

Валентность

Валентность – это способность атомов образовать n - число химических связей с атомами других элементов.

А еще валентность – это способность атома удержать другие атомы возле себя. Как вам известно из школьного курса химии, разные атомы связываются друг с другом электронами внешнего энергетического уровня. Неспаренный электрон ищет для себя пару у другого атома. Эти электроны внешнего уровня называются валентными. Значит валентность можно определить и как число электронных пар, связывающих атомы друг с другом. Посмотрите структурную формулу воды: Н – О – Н. Каждая черточка – это электронная пара, значит показывает валентность, т.е. кислород здесь имеет две черточки, значит он двухвалентен, от молекул водорода исходят по одной черточке, значит водород одновалентен. При записи валентность обозначается римскими цифрами: О (II), Н (I). Может указываться и над элементом.


Валентность бывает постоянной либо переменной. К примеру, у щелочей металлов она постоянна и равняется I. А вот хлор в различных соединениях проявляет валентности I, III, V, VII.


Как определить валентность элемента?

    Вновь обратимся к Периодической таблице. Постоянная валентность у металлов главных подгрупп, так металлы первой группы имеют валентность I, второй II. А у металлов побочных подгрупп валентность переменная. Также она переменная и у неметаллов. Высшая валентность атома равна № группы, низшая равна = № группы - 8. Знакомая формулировка. Не означает ли это то, что валентность совпадает со степенью окисления. Помните, валентность может совпадать со степенью окисления, но данные показатели не тождественны друг другу. Валентность не может иметь знака =/-, а также не может быть нулевой.

    Второй способ определения валентности по химической формуле, если известна постоянная валентность одного из элементов. Например, возьмем формулу оксида меди: CuО. Валентность кислорода II. Видим, что на один атом кислорода в данной формуле приходится один атом меди, значит и валентность меди равна II. А теперь возьмем формулу посложнее: Fe 2 O 3 . Валентность атома кислорода равна II. Таких атомов здесь три, умножаем 2*3 =6. Получили, что на два атома железа приходится 6 валентностей. Узнаем валентность одного атома железа: 6:2=3. Значит валентность железа равна III.

    Кроме того, когда необходимо оценить "максимальную валентность", всегда следует исходить из электронной конфигурации, которая имеется в «возбужденном» состоянии.



Учимся определять валентность и степень окисления.

Практика показывает, что многие обучающиеся испытывают затруднения при определении валентности и степени окисления. Пособие направлено на овладение основополагающими химическими понятиями валентность и степень окисления,

формирование умения давать количественные оценки и проводить расчеты валентности и степени окисления по химическим формулам в неорганических и органических соединениях, а также способствует подготовке студентов для сдачи ЕГЭ.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, осуществления поиска и использования информации, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

Валентность и степень окисления.

Правила определения степеней окисления элементов

I . Валентность

Валентность – это способность атомов присоединять к себе определенное число других атомов.

Правила определения валентности
элементов в соединениях

2) Атом металла стоит в формуле на первое место.

2) В формулах соединений атом неметалла, проявляющий низшую валентность, всегда стоит на втором месте, а название такого соединения оканчивается на «ид».

Например, СаО – оксид кальция, NaCl – хлорид натрия, PbS – сульфид свинца.

Теперь вы сами можете написать формулы любых соединений металлов с неметаллами.

3) Атом металла ставится в формуле на первое место.

II . Степень окисления

Степень окисления – это условный заряд, который получает атом в результате полной отдачи (принятия) электронов, исходя из условия, что все связи в соединении ионные.

Рассмотрим строение атомов фтора и натрия:

- Что можно сказать о завершённости внешнего уровня атомов фтора и натрия?

- Какому атому легче принять, а какому легче отдать валентные электроны с целью завершения внешнего уровня?

Оба атома имеют незавершённый внешний уровень?

Атому натрия легче отдавать электроны, фтору – принять электроны до завершения внешнего уровня.

F0 + 1ē → F-1 (нейтральный атом принимает один отрицательный электрон и приобретает степень окисления «-1», превращаясь в отрицательно заряженный ион - анион )

Na0 – 1ē → Na+1 (нейтральный атом отдаёт один отрицательный электрон и приобретает степень окисления «+1», превращаясь в положительно заряженный ион - катион )

Как определить степень окисления атома в ПСХЭ?

Правила определения степени окисления атома в ПСХЭ:

1. Водород обычно проявляет степень окисления (СО) +1 (исключение, соединения с металлами (гидриды) – у водорода СО равна (-1) Me+nHn-1)

2. Кислород обычно проявляет СО -2 (исключения: О+2F2, H2O2-1 – перекись водорода)

3. Металлы проявляют только + n положительную СО

4. Фтор проявляет всегда СО равную -1 (F-1)

5. Для элементов главных подгрупп :

Высшая СО (+) = номеру группыN группы

Низшая СО (-) = N группы –8

Правила определения степени окисления атома в соединении:

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равнанулю - Na0, P40, O20

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0 , а в сложном ионе его заряду.

Например, H +1 N +5 O 3 -2 : (+1)*1+(+5)*1+(-2)*3 = 0

[ S +6 O 4 -2 ]2- : (+6)*1+(-2)*4 = -2

Задание 1 – определите степени окисления всех атомов в формуле серной кислоты H2SO4?

1. Проставим известные степени окисления у водорода и кислорода, а СО серы примем за «х»

(+1)*1+(х)*1+(-2)*4=0

Х=6 или (+6), следовательно, у серы CО +6, т. е. S+6

Задание 2 – определите степени окисления всех атомов в формуле фосфорной кислоты H3PO4?

1. Проставим известные степени окисления у водорода и кислорода, а СО фосфора примем за «х»

2. Составим и решим уравнение, согласно правилу (II):

(+1)*3+(х)*1+(-2)*4=0

Х=5 или (+5), следовательно, у фосфора CО +5, т. е. P+5

Задание 3 – определите степени окисления всех атомов в формуле иона аммония (NH4)+?

1. Проставим известную степень окисления у водорода, а СО азота примем за «х»

2. Составим и решим уравнение, согласно правилу (II):

(х)*1+(+1)*4=+1

Х=-3, следовательно, у азота CО -3, т. е. N-3

Алгоритм составления формулы по степени окисления

Составление названий бинарных соединений

Сравним понятия «валентность» и «степень окисления»:


Запомни!

Валентность - - это способность атома образовывать определенное количество связей с другими атомами.

Правила определения валентности

1. В молекулах простых веществ: H2, F2, Cl2, Br2, I2 равна единице.

2. В молекулах простых веществ: O2, S8 равна двум.

3. В молекулах простых веществ: N2, P4 и CO - оксиде углерода (II) - равна трем.

4. В молекулах простых веществ, которые образует углерод (алмаз, графит), а также в органических соединениях, которые он образует, валентность углерода равна четырем.

5. В составе сложных веществ водород одновалентен, кислород, в основном, двухвалентен. Для определения валентности атомов других элементов в составе сложных веществ надо знать строение этих веществ.

Степень окисления – это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (с ионной и ковалентной полярной связью) состоят только из ионов.

Высшая степень окисления элемента равна номеру группы.

Исключения:

фтор высшая степень окисления ноль в простом веществе F20

кислород высшая степень окисления +2 во фториде кислорода О+2F2

Низшая степень окисления элемента равна восемь минус номер группы (по числу электронов, которые атом элемента может принять до завершенного восьми электронного уровня)

Правила определения степени окисления (далее обозначим: ст. ок.)

Общее правило: Сумма всех степеней окисления элементов в молекуле с учетом количества атомов равна нулю (Молекула электронейтральна.), в ионе - равна заряду иона.

I. Степень окисления простых веществ равна нулю: Са 0 , O2 0 , Cl2 0

II. ст. ок. в бинарных c оединениях:

Менее электроотрицательный элемент ставится на первое место. (Исключения: С-4Н4+ метан и N-3H3+аммиак)

Нужно помнить, что

Ст. ок. металла всегда положительна

Ст. ок. металлов I, II, III групп главных подгрупп постоянна и равна номеру группы

Для остальных ст. ок. вычисляется по общему правилу.

Более электроотрицательный элемент ставится на второе место, его ст. ок. равна восемь минус номер группы (по числу электронов, которые он принимает до завершенного восьми электронного уровня).

Исключения: пероксиды, например, Н2+1О2-1, Ba+2O2-1 и др. ; карбиды металлов I и II групп Ag2+1C2-1,Ca+2C2-1 и др. (В школьном курсе встречается соединение FeS2 - пирит. Это дисульфид железа. Степень окисления серы в нем (-1) Fe+2S2-1). Это происходит потому, что в этих соединениях есть связи между одинаковыми атомами -О-О-, - S-S-, тройная связь в карбидах между атомами углерода. Степень окисления и валентность элементов в этих соединениях не совпадают: у углерода валентность IV, у кислорода и серы II.

III. Степень окисления в основаниях Ме + n (ОН) n равна количеству гидроксогрупп.

1. в гидроксогруппе ст. ок. кислорода -2, водорода +1, заряд гидроксогруппы 1-

2. ст. ок. металла равна количеству гидроксогрупп

IV. Степень окисления в кислотах:

1. ст. ок. водорода +1, кислорода -2

2. ст. ок. центрального атома вычисляется по общему правилу путем решения простого уравнения

Например, Н3+1РхО4-2

3∙(+1) + х + 4∙(-2) = 0

3 + х – 8 = 0

х = +5 (не забудьте знак +)

Можно запомнить, что у кислот с высшей степени окисления центрального элемента, соответствующего номеру группы, название будет заканчиваться на –ная:

Н2СО3 угольная Н2С+4О3

Н2SiО3 кремниевая (искл.) Н2Si+4О3

НNО3 азотная НN+5О3

Н3PО4 фосфорная Н3P+5О4

Н2SО4 серная Н2S+6О4

НСlО4 хлорная НCl+7О4

НMnО4 марганцовая НMn+7О4

Останется запомнить:

НNО2 азотистая НN+3О2

Н2SО3 сернистая Н2S+4О3

НСlО3 хлорноватая НCl+5О3

НСlО2 хлористая НCl+3О2

НСlОхлорноватистая НCl+1О

V. Степень окисления в солях

у центрального атома такая же, как в кислотном остатке. Достаточно помнить или определить ст. ок. элемента в кислоте.

VI. Степень окисления элемента в сложном ионе равна заряду иона.

Например, NH4+Cl- : записываем ион NхН4+1

х + 4∙(+1) = +1

ст. ок. азота -3

Например, определить ст. ок. элементов в гексацианоферрате(III) калия К3

У калия +1: К3+1, отсюда заряд иона 3-

У железа +3 (указано в названии) 3-, отсюда (CN)66-

У одной группы (CN)-

Более электроотрицательный азот: у него -3, отсюда (CхN-3)-

ст. ок. углерода +2

VII. Степень окисления углерода в органических соединениях разнообразна и вычисляется, исходя из учета того, что ст. ок. водорода равна +1, кислорода -2

Например, С3Н6

3∙х + 6∙1 = 0

ст. ок. углерода -2 (при этом валентность углерода равна IV)

Задание. Определить степень окисления и валентность фосфора в фосфорноватистой кислоте H3PO2.

Вычислим степень окисления фосфора.

Обозначим её за х. Подставим степень окисления водорода +1, а кислорода -2, умножив на соответствующее количество атомов: (+1) ∙ 3 + х + (-2) ∙ 2 = 0, отсюда х = +1.

Определим валентность фосфора в этой кислоте.

Известно, что это - одноосновная кислота, поэтому только один атом водорода связан с атомом кислорода. Учитывая, что водород в соединениях одновалентен, а кислород - двухвалентен, получаем структурную формулу, из которой видно, что фосфор в этом соединении имеет валентность пять.

Графический метод определения степени окисления

в органических веществах

В органических веществах можно определять степени окисления элементов алгебраическим методом , при этом получается усредненное значение степени окисления . Этот метод наиболее применим в том случае, если все атомы углерода органического вещества по окончании реакции приобрели одинаковую степень окисления (реакции горения или полного окисления).

Рассмотрим такой случай:

Пример 1 . Обугливание дезоксирибозы серной концентрированной кислотой с дальнейшим окислением:

С5Н10О4 + H2SO4 ® CO2 + H2O + SO2

Найдём степень окисления углерода х в дезоксирибозе: 5х + 10 – 8 = 0; х = - 2/5

В электронном балансе учитываем все 5 атомов углерода:

I. Валентность (повторение)

Валентность – это способность атомов присоединять к себе определенное число других атомов.

Правила определения валентности
элементов в соединениях

1. Валентность водорода принимают за I (единицу). Тогда в соответствии с формулой воды Н 2 О к одному атому кислорода присоединено два атома водорода.

2. Кислород в своих соединениях всегда проявляет валентность II . Поэтому углерод в соединении СО 2 (углекислый газ) имеет валентность IV.

3. Высшая валентность равна номеру группы .

4. Низшая валентность равна разности между числом 8 (количество групп в таблице) и номером группы, в которой находится данный элемент, т.е. 8 - N группы .

5. У металлов, находящихся в «А» подгруппах, валентность равна номеру группы.

6. У неметаллов в основном проявляются две валентности: высшая и низшая.

Например: сера имеет высшую валентность VI и низшую (8 – 6), равную II; фосфор проявляет валентности V и III.

7. Валентность может быть постояннойили переменной.

Валентность элементов необходимо знать, чтобы составлять химические формулы соединений.

Запомните!

Особенности составления химических формул соединений.

1) Низшую валентность проявляет тот элемент, который находится в таблице Д.И.Менделеева правее и выше, а высшую валентность – элемент, расположенный левее и ниже.

Например, в соединении с кислородом сера проявляет высшую валентность VI, а кислород – низшую II. Таким образом, формула оксида серы будет SO 3.

В соединении кремния с углеродом первый проявляет высшую валентность IV, а второй – низшую IV. Значит, формула – SiC. Это карбид кремния, основа огнеупорных и абразивных материалов.

2) Атом металла стоит в формуле на первое место.

2) В формулах соединений атом неметалла, проявляющий низшую валентность, всегда стоит на втором месте, а название такого соединения оканчивается на «ид».

Например, СаО – оксид кальция, NaCl – хлорид натрия, PbS – сульфид свинца.

Теперь вы сами можете написать формулы любых соединений металлов с неметаллами.

3) Атом металла ставится в формуле на первое место.

II . Степень окисления (новый материал)

Степень окисления – это условный заряд, который получает атом в результате полной отдачи (принятия) электронов, исходя из условия, что все связи в соединении ионные.

Рассмотрим строение атомов фтора и натрия:

F +9)2)7

Na +11)2)8)1

- Что можно сказать о завершённости внешнего уровня атомов фтора и натрия?

- Какому атому легче принять, а какому легче отдать валентные электроны с целью завершения внешнего уровня?

Оба атома имеют незавершённый внешний уровень?

Атому натрия легче отдавать электроны, фтору – принять электроны до завершения внешнего уровня.

F 0 + 1ē → F -1 (нейтральный атом принимает один отрицательный электрон и приобретает степень окисления «-1», превращаясь в отрицательно заряженный ион - анион )

Na 0 – 1ē → Na +1 (нейтральный атом отдаёт один отрицательный электрон и приобретает степень окисления «+1», превращаясь в положительно заряженный ион - катион )


Как определить степень окисления атома в ПСХЭ Д.И. Менделеева?

Правила определения степени окисления атома в ПСХЭ Д.И. Менделеева:

1. Водород обычно проявляет степень окисления (СО) +1 (исключение, соединения с металлами (гидриды) – у водорода СО равна (-1) Me + n H n -1 )

2. Кислород обычно проявляет СО -2 (исключения: О +2 F 2 , H 2 O 2 -1 – перекись водорода)

3. Металлы проявляют только + n положительную СО

4. Фтор проявляет всегда СО равную -1 (F -1)

5. Для элементов главных подгрупп :

Высшая СО (+) = номеру группы N группы

Низшая СО (-) = N группы 8

Правила определения степени окисления атома в соединении:

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равна нулю - Na 0 , P 4 0 , O 2 0

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0 , а в сложном ионе его заряду.

Например, H +1 N +5 O 3 -2 : (+1)*1+(+5)*1+(-2)*3 = 0

2- : (+6)*1+(-2)*4 = -2

Задание 1 – определите степени окисления всех атомов в формуле серной кислоты H 2 SO 4 ?

1. Проставим известные степени окисления у водорода и кислорода, а СО серы примем за «х»

H +1 S x O 4 -2

(+1)*1+(х)*1+(-2)*4=0

Х=6 или (+6), следовательно, у серы C О +6, т.е. S +6

Задание 2 – определите степени окисления всех атомов в формуле фосфорной кислоты H 3 PO 4 ?

1. Проставим известные степени окисления у водорода и кислорода, а СО фосфора примем за «х»

H 3 +1 P x O 4 -2

2. Составим и решим уравнение, согласно правилу (II ):

(+1)*3+(х)*1+(-2)*4=0

Х=5 или (+5), следовательно, у фосфора C О +5, т.е. P +5

Задание 3 – определите степени окисления всех атомов в формуле иона аммония (NH 4) + ?

1. Проставим известную степень окисления у водорода, а СО азота примем за «х»

(N х H 4 +1) +

2. Составим и решим уравнение, согласно правилу (II ):

(х)*1+(+1)*4=+1

Х=-3, следовательно, у азота C О -3, т.е. N -3

В химии широко применяется понятие электроотрицательности (ЭО) — свойство атомов данного элемента оттягивать на себя электроны от атомов других элементов в соединениях называют электроотрицательностью. Электроотрицательность лития условно принимается за единицу, ЭО других элементов вычисляют соответственно. Имеется шкала значений ЭО элементов.

Числовые значения ЭО элементов имеют приблизительные значения: это безразмерная величина . Чем выше ЭО элемента, тем ярче проявляются его неметаллические свойства. По ЭО элементы можно записать следующим образом:

F > O > Cl > Br > S > P > C > H > Si > Al > Mg > Ca > Na > K > Cs

Наибольшее значение ЭО имеет фтор. Сопоставляя значения ЭО элементов от франция (0,86) до фтора (4,1), легко заметить, что ЭО подчиняется Периодическому закону. В Периодической системе элементов ЭО в периоде растет с увеличением номера элемента (слева направо), а в главных подгруппах - уменьшается (сверху вниз). В периодах по мере увеличения зарядов ядер атомов число электронов на внешнем слое увеличивается, радиус атомов уменьшается, поэтому легкость отдачи электронов уменьшается, ЭО возрастает, следовательно, усиливаются неметаллические свойства.

Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи.

Если величина Δ X = 0 – связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 – 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 – 0,93) = 2,23.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом . Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка расположена близко к ядру.


Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов.
Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем “добирать” электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.


Степень окисления

Сложные вещества, состоящие из двух химических элементов, называют бинарными (от лат. би - два), или двухэлементными (NaCl, HCl). В случае ионной связи в молекуле NaCl атом натрия передает свой внешний электрон атому хлора и превращается при этом в ион с зарядом +1, а атом хлора принимает электрон и превращается в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

При химическом взаимодействии в молекуле HCl общая электронная пара смещается в сторону более электроотрицательного атома. Например,, т. е. электрон не полностью перейдет от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов δ: Н +0.18 Сl -0.18 . Если же представить, что и в молекуле HCl, как и в хлориде NaCl, электрон полностью перешел от атома водорода к атому хлора, то они получили бы заряды +1 и -1:

Такие услов­ные заряды называют степенью окисления . При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связую­щие электроны полностью перешли к более элек­троотрицательному атому, а потому соединения со­стоят только из положительно и отрицательно заряженных атомов.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов. Степень окисления может иметь отрицательное, положительное или нулевое значение, которое обычно ставится над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов или к которым смещены общие электронные пары, т. е. атомы более электроотрицательных элементов . Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, т. е. атомы менее электроотрицательных элементов . Нулевое значение степени окисления имеют атомы в молекулах простых веществ и атомы в свободном состоянии, например:

В соединениях суммарная степень окисления всегда равна нулю.

Валентность

Валентность атома химического элемента определяется в первую очередь числом неспаренных электронов, принимающих участие в образовании химической связи.

Валентные возможности атомов определяются:

Числом неспаренных электронов (одноэлектронных орбиталей);

Наличием свободных орбиталей;

Наличием неподеленных пар электронов.

В органической химии понятие «валентность» замещает понятие «степень окисления», с которым привычно работать в неорганической химии. Однако это не одно и то же. Валентность не имеет знака и не может быть нулевой, тогда как степень окисления обязательно характеризуется знаком и может иметь значение, равное нулю.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей. Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4.

Постоянные валентности:

  • H, Na, Li, К, Rb, Cs — Степень окисления I
  • О, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd — Степень окисления II
  • B, Al, Ga, In — Степень окисления III

Переменные валентности:

  • Сu - I и II
  • Fe, Со, Ni -II и III
  • С, Sn, Pb - II и IV
  • P- III и V
  • Cr - II, III и VI
  • S - II, IV и VI
  • Mn-II, III, IV, VI и VII
  • N-II, III, IV и V
  • Cl-I, IV, VI и VII

Используя валентности можно составить формулу соединения.

Химическая формула — это условная запись состава вещества посредством химических знаков и индексов.

Например: Н 2 O-формула воды, где Н и О-химические знаки элементов, 2 — индекс, который показывает число атомов данного элемента, входящих в состав молекулы воды.

При названии веществ с переменной валентностью обязательно указывается его валентность, которая ставится в скобки. Например, Р 2 0 5 — оксид фосфора (V)

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равна нулю — Na 0 , Р 4 0 , О 2 0

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0. а в сложном ионе его заряду.

Например:

Разберем для примера несколько соединений и узнаем валентность хлора :

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости