Меню
Бесплатно
Главная  /  Бизнес  /  Для чего нужна материальная точка. Безразмерная материальная точка и разные системы отсчета

Для чего нужна материальная точка. Безразмерная материальная точка и разные системы отсчета

Что такое материальная точка? Какие физические величины связаны с ней, для чего вообще вводится понятие материальной точки? В этой статье мы порассуждаем об этих вопросах, приведем примеры задач, которые связаны с обсуждаемым понятием, а также поговорим о формулах, применяемых для их решения.

Определение

Итак, что же такое материальная точка? Разные источники дают определение в несколько разном литературном стиле. То же самое касается и преподавателей в вузах, колледжах и общеобразовательных учреждениях. Однако, согласно стандарту, материальной точкой называется тело, размерами которого (в сравнении с размерами системы отсчета) можно пренебречь.

Связь с реальными объектами

Казалось бы, как можно принять за материальную точку человека, велосипедиста, автомобиль, корабль и даже самолет, о которых в большинстве случаев идет речь в задачах по физике, когда речь заходит о механике движущегося тела? Давайте смотреть глубже! Для определения координаты движущегося тела в любой момент времени необходимо знать несколько параметров. Это и начальная координата, и скорость движения, и ускорение (если оно, конечно же, имеет место), и время.

Что необходимо для решения задач с материальными точками?

Координатную связь можно найти, только привязавшись к системе координат. Вот такой своеобразной системой координат для автомобиля и другого тела становится наша планета. А в сравнении с ее величиной размерами тела действительно можно пренебречь. Соответственно, если тело мы принимаем за материальную точку, ее координату в двухмерном (трехмерном) пространстве можно и нужно находить как координату геометрической точки.

Движение материальной точки. Задачи

В зависимости от сложности, задачи могут приобретать определенные условия. Соответственно, отталкиваясь от данных нам условий, можно использовать определенные формулы. Иногда, даже имея весь арсенал формул, решить задачу, что называется, "в лоб" все равно не представляется возможным. Поэтому крайне важно не просто знать формулы кинематики, имеющие отношение к материальной точке, но и уметь их использовать. То есть выражать нужную величину, а системы уравнений приравнивать. Вот основные формулы, которые мы будем применять в ходе решения задач:

Задача № 1

Автомобиль, стоящий на стартовой черте, резко начинает движение из неподвижного положения. Узнать, за какое время он разгонится до 20 метров в секунду, если его ускорение составляет 2 метра на секунду в квадрате.

Сразу хочется сказать, что эта задача - практически самое простое, что может ожидать ученика. Слово “практически” стоит здесь не просто так. Все дело в том, что проще может быть только подставить прямые значения в формулы. Нам же следует сначала выразить время, а затем произвести расчеты. Для решения задачи понадобится формула определения мгновенной скорости (мгновенная скорость - это скорость тела в определенный момент времени). Она имеет следующий вид:

Как мы видим, в левой части уравнения у нас стоит мгновенная скорость. Она нам там абсолютно не нужна. Поэтому делаем простые математические действия: произведение ускорения на время оставляем в правой части, а начальную скорость переносим влево. При этом следует внимательно следить за знаками, поскольку один неправильно оставленный знак может в корне изменить ответ к задаче. Далее немного усложняем выражение, избавляясь от ускорения в правой части: делим на него. В итоге справа у нас должно остаться чистое время, слева - двухуровневое выражение. Все это дело просто меняем местами, чтобы смотрелось привычнее. Остается только подставить величины. Итак, получается, что автомобиль разгонится за 10 секунд. Важно: мы решили задачу, предполагая, что в автомобиль в ней - материальная точка.

Задача № 2

Материальная точка начинает экстренное торможение. Определить, какой была начальная скорость в момент экстренного торможения, если до полной остановки тела прошло 15 секунд. Ускорение принять равным 2 метрам на секунду в квадрате.

Задача, в принципе, достаточно похожа на предыдущую. Но здесь есть пара своих нюансов. Во-первых, нам нужно определить скорость, которую мы обычно называем начальной. То есть в определенный момент начинается отсчет времени и расстояния, пройденного телом. Скорость при этом действительно будет подпадать под данное определение. Второй нюанс - знак ускорения. Напомним, что ускорение - это величина векторная. Следовательно, в зависимости от направления она будет изменять свой знак. Положительное ускорение наблюдается в том случае, если направление скорости тела совпадает с его направлением. Проще говоря, когда тело ускоряется. В противном случае (то есть в нашей ситуации с торможением) ускорение будет отрицательным. И эти два фактора нужно учитывать, чтобы решить данную задачу:

Как и в прошлый раз, сначала выразим необходимую нам величину. Чтобы избежать возни со знаками, начальную скорость оставим там, где она есть. С противоположным знаком переносим в другую часть уравнения произведение ускорения на время. Так как торможение было полным, конечная скорость составляет 0 метров в секунду. Подставляя эти и другие значения, легко находим начальную скорость. Она будет равна 30 метрам в секунду. Легко заметить, что, зная формулы, справляться с простейшими задачами не так уж и сложно.

Задача № 3

В определенный момент времени диспетчеры начинают слежение за перемещением воздушного объекта. Его скорость в этот момент равняется 180 километрам в час. Через промежуток времени, равный 10 секундам, его скорость увеличивается до 360 километров в час. Определите расстояние, пройденное самолетом за время перелета, если время полета составило 2 часа.

На самом деле в широком понимании данная задача имеет множество нюансов. Например, разгон воздушного судна. Понятно, что по прямолинейной траектории наше тело двигаться бы не могло в принципе. То есть ему нужно взлететь, набрать скорость, а потом уже на определенной высоте какой-то отрезок расстояния двигаться прямолинейно. В расчет не берутся отклонения, а также замедление самолета при посадке. Но это не наше дело в данном случае. Поэтому мы будем решать задачу в рамках школьных знаний, общих сведений о кинематическом движении. Чтобы решить задачу, нам понадобится следующая формула:

Но вот тут нас ожидает загвоздка, о которой мы говорили ранее. Знать формулы недостаточно - их нужно уметь использовать. То есть выводить одну величину при помощи альтернативных формул, находить ее и подставлять. При просмотре начальных сведений, которые имеются в задаче, сразу становится понятно, что решить ее просто так не получится. Об ускорении ничего не сказано, зато есть информация о том, как изменилась скорость за определенный промежуток времени. Значит, ускорение мы можем найти самостоятельно. Берем формулу нахождения мгновенной скорости. Она имеет вид

Ускорение и время оставляем в одной части, а начальную скорость переносим в другую. Затем делением обеих частей на время освобождаем правую часть. Здесь сразу же можно подсчитать ускорение, подставив прямые данные. Но гораздо целесообразнее выражать и дальше. Полученную для ускорения формулу подставляем в основную. Там можно немного сократить переменные: в числителе время дано в квадрате, а в знаменателе - в первой степени. Поэтому от этого знаменателя можно избавиться. Ну а дальше - простая подстановка, поскольку больше выражать ничего не надо. Ответ должен получиться следующий: 440 километров. Ответ будет другим, если переводить величины в другую размерность.

Заключение

Итак, что же мы выяснили в ходе этой статьи?

1) Материальная точка - это тело, размерами которого по сравнению с размерами системы отсчета можно пренебречь.

2) Для решения задач, связанных с материальной точкой, есть несколько формул (приведены в статье).

3) Знак ускорения в этих формулах зависит от параметра движения тела (ускорение или торможение).

Определение

Материальной точкой называется макроскопическое тело, размерами, формой, вращением и внутренней структурой которого можно пренебречь при описании его движения.

Вопрос о том, можно ли данное тело рассматривать как материальную точку, зависит не от размеров этого тела, а от условий решаемой задачи. Например, радиус Земли значительно меньше расстояния от Земли до Солнца, и ее орбитальное движение можно хорошо описать как движение материальной точки с массой, равной массе Земли и расположенной в ее центре. Однако при рассмотрении суточного движения Земли вокруг собственной оси замена ее материальной точкой не имеет смысла. Применимость модели материальной точки к конкретному телу зависит не столько от размеров самого тела, сколько от условий его движения. В частности, в соответствии с теоремой о движении центра масс системы при поступательном движении любое твёрдое тело можно считать материальной точкой, положение которой совпадает с центром масс тела.

Масса, положение, скорость и некоторые другие физические свойства материальной точки в каждый конкретный момент времени полностью определяют её поведение.

Положение материальной точки в пространстве определяется как положение геометрической точки. В классической механике масса материальной точки полагается постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами. При аксиоматическом подходе к построению классической механики в качестве одной из аксиом принимается следующее:

Аксиома

Материальная точка - геометрическая точка, которой поставлен в соответствие скаляр, называемый массой: $(r,m)$, где $r$ - вектор в евклидовом пространстве, отнесённом к какой-либо декартовой системе координат. Масса полагается постоянной, независящей ни от положения точки в пространстве, ни от времени.

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера, которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Метод изучения законов движения реальных тел путём исследования движения идеальной модели - материальной точки - является основным в механике. Любое макроскопическое тело можно представить как совокупность взаимодействующих материальных точек g, с массами, равными массам его частей. Изучение движения этих частей сводится к изучению движения материальных точек.

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы, пары металлов, и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Задание 1

а) автомобиль, въезжающий в гараж;

б) автомобиль на трассе Воронеж - Ростов?

а) автомобиль, въезжающий в гараж, нельзя принять за материальную точку, так как в данных условиях существенны размеры автомобиля;

б) автомобиль на трассе Воронеж-Ростов можно принять за материальную точку, так как размеры автомобиля намного меньше расстояния между городами.

Можно ли принять за материальную точку:

а) мальчика, который по дороге из школы домой проходит 1 км;

б) мальчика, делающего зарядку.

а) Когда мальчик, возвращаясь из школы, проходит до дома расстояние в 1 км, то мальчика в этом движении можно рассматривать как материальную точку, потому что его размеры малы по сравнению с расстоянием, которое он проходит.

б) когда тот же мальчик выполняет упражнения утренней зарядки, то материальной точкой считать его никак нельзя.

Материальная точка

Материа́льная то́чка (частица) - простейшая физическая модель в механике - идеальное тело, размеры которого равны нулю, можно также считать размеры тела бесконечно малыми по сравнению с другими размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как положение геометрической точки .

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

Особенности

Масса, положение и скорость материальной точки в каждый конкретный момент времени полностью определяют её поведение и физические свойства .

Следствия

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве, и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера , которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Ограничения

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы , пары металлов , и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Материальная точка" в других словарях:

    Точка, имеющая массу. В механике понятием материальная точка пользуются в случаях, когда размеры и форма тела при изучении его движения не играют роли, а важна только масса. Практически любое тело можно рассматривать как материальную точку, если… … Большой Энциклопедический словарь

    Понятие, вводимое в механике для обозначения объекта, к рый рассматривается как точка, имеющая массу. Положение М. т. в пр ве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически тело можно считать… … Физическая энциклопедия

    материальная точка - Точка, обладающая массой. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика EN particle DE materialle Punkt FR point matériel … Справочник технического переводчика

    Современная энциклопедия

    В механике: бесконечно малое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    Материальная точка - МАТЕРИАЛЬНАЯ ТОЧКА, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной… … Иллюстрированный энциклопедический словарь

    Понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение материальной точки в пространстве определяется как положение геометрической точки, что упрощает решение задач механики. Практически любое тело можно… … Энциклопедический словарь

    Материальная точка - геометрическая точка, обладающая массой; материальная точка абстрактный образ материального тела, обладающего массой и не имеющего размеров … Начала современного естествознания

    материальная точка - materialusis taškas statusas T sritis fizika atitikmenys: angl. mass point; material point vok. Massenpunkt, m; materieller Punkt, m rus. материальная точка, f; точечная масса, f pranc. point masse, m; point matériel, m … Fizikos terminų žodynas

    материальная точка - Точка, имеющая массу … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Физика. 9 класс (20 таблиц) , . Учебный альбом из 20 листов. Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньютона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по…

ВВЕДЕНИЕ

Дидактический материал предназначен студентам всех специальностей заочного факультета ГУЦМиЗ, изучающих курс механики по программе для инженерно-технических специальностей.

Дидактический материал содержит краткое изложение теории по изучаемой теме, адаптированной к уровню обученности студентов-заочников, примеры решения типовых задач, вопросы и задания, аналогичные предлагаемым студентам на экзаменах, справочный материал.

Цель такого материала – помочь студенту-заочнику самостоятельно в сжатые сроки усвоить кинематическое описание поступательного и вращательного движений, используя метод аналогии; научиться решать численные и качественные задачи, разбираться в вопросах, связанных с размерностью физических величин.

Особое внимание уделяется решению качественных задач, как одному из приемов более глубокого и сознательного усвоения основ физики, необходимых при изучении специальных дисциплин. Они помогают понять смысл происходящих явлений природы, уяснить сущность физических законов и уточнить область их применения.

Дидактический материал может быть полезен студентам дневной формы обучения.

КИНЕМАТИКА

Часть физики, изучающую механическое движение, называют механикой . Под механическим движением понимают изменение с течением времени взаимного расположения тел или их частей.

Кинематика – первый раздел механики, она изучает законы движения тел, не интересуясь причинами, вызывающими это движение.

1. Материальная точка. Система отсчета. Траектория.

Путь. Вектор перемещения

Простейшая модель кинематики - материальная точка . Это тело, размерами которого в данной задаче можно пренебречь. Любое тело можно представить как совокупность материальных точек.

Чтобы математически описать движение тела, необходимо определиться с системой отсчета. Система отсчета (СО) состоит из тела отсчета и связанных с ним системы координат и часов . Если в условии задачи нет специальных указаний, считается, что система координат связана с поверхностью Земли. В качестве системы координат чаще всего используется декартова система.

Пусть требуется описать движение материальной точки в декартовой системе координат ХУ Z (рис.1). В некоторый момент времени t 1 точка находится в положении А . Положение точки в пространстве можно характеризовать радиусом - вектором r 1 , проведенным из начала координат в положение А , и координатами x 1 , y 1 , z 1 . Здесь и далее векторные величины обозначены жирным курсивом. К моменту времени t 2 = t 1 + Δ t материальная точка переместится в положение В с радиус вектором r 2 и координатами x 2 , y 2 , z 2 .

Траекторией движения называется кривая в пространстве, по которой движется тело. По виду траектории различают прямолинейное, криволинейное движения и движение по окружности.

Длина пути (или путь ) - длина участка АВ , измеренная по траектории движения, обозначается через Δs (или s). Путь в международной системе единиц (СИ) измеряется в метрах (м).

Вектор перемещения материальной точки Δr представляет собой разность векторов r 2 и r 1 , т.е.

Δr = r 2 - r 1.

Модуль этого вектора, называемый перемещением, является кратчайшим расстоянием между положениями А и В (начальным и конечным) движущейся точки. Очевидно, что Δs ≥ Δr , причем равенство выполняется при прямолинейном движении.

При движении материальной точки значение пройденного пути, радиуса-вектора и его координат меняется со временем. Кинематическими уравнениями движения (в дальнейшем уравнениями движения ) называют их зависимости от времени, т.е. уравнения вида

s =s(t ), r= r (t ), x =х (t ), y =у (t ), z =z(t ).

Если для движущегося тела известно такое уравнение, то в любой момент времени можно найти скорость его движения, ускорение и т.д., в чем далее убедимся.

Любое движение тела можно представить как совокупность поступательного и вращательного движений.

2. Кинематика поступательного движения

Поступательным называют такое движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной самой себе.

Скорость характеризует быстроту движения и направление движения.

Средней скоростью движения в интервале времени Δt называется величина

(1)

где - s отрезок пути, пройденный телом за время за время t .

Мгновенной скоростью движения (скорость в данный момент времени) называют величину, модуль которой определяется первой производной от пути по времени

(2)

Скорость - векторная величина. Вектор мгновенной скорости всегда направлен по касательной к траектории движения (рис.2). Единица измерения скорости – м/с.

Значение скорости зависит от выбора системы отсчета. Если человек сидит в вагоне поезда, он вместе с поездом движется относительно СО, связанной с землей, но покоится относительно СО, связанной с вагоном. Если человек ходит по вагону со скоростью , то его скорость относительно СО «земля»  з зависит от направления движения. Вдоль движения поезда  з =  поезда +  , против   з =  поезда - .

Проекции вектора скорости на оси координат υ х ,υ у z определяются как первые производные от соответствующих координат по времени (рис. 2):

Если известны проекции скорости на оси координат, модуль скорости можно определить по теореме Пифагора:

(3)

Равномерным называют движение с постоянной скоростью (υ = const). Если при этом не меняется направление вектора скорости v , то движение будет равномерным прямолинейным.

Ускорение - физическая величина, характеризующая быстроту изменения скорости по величине и направлению Среднее ускорение определяется как

(4)

где Δυ - изменение скорости за отрезок времени Δt .

Вектор мгновенного ускорения определяется как производная от вектора скорости v по времени:

(5)

Поскольку при криволинейном движении скорость может изменяться как по величине, так и по направлению, принято разлагать вектор ускорения на две взаимно перпендикулярные составляющие

а = а τ + а n . (6)

Тангенциальное (или касательное) ускорение а τ характеризует быстроту изменения скорости по величине, его модуль

.(7)

Тангенциальное ускорение направлено по касательной к траектории движения по скорости при ускоренном движении и против скорости при замедленном движении (рис. 3)..

Нормальное (центростремительное) ускорение а n характеризует изменение скорости по направлению, его модуль

(8)

где R - радиус кривизны траектории.

Вектор нормального ускорения направлен к центру окружности, которую можно провести касательно к данной точке траектории; он всегда перпендикулярен вектору тангенциального ускорения (рис.3).

Модуль полного ускорения определяется по теореме Пифагора

. (9)

Направление вектора полного ускорения а определяется векторной суммой векторов нормального и тангенциального ускорений (рис.3)

Равнопеременным называют движение с постоянным ускорением. Если ускорение положительно, то это равноускоренное движение , если же оно отрицательно - равнозамедленное .

При прямолинейном движении а ם =0 и а = а τ . Если а ם =0 и а τ = 0, тело движется прямолинейно и равномерно ; при а ם =0 и а τ = const движение прямолинейное равнопеременное .

При равномерном движении пройденный путь вычисляется по формуле:

ds = dt s = ∫dt = ∫dt = t + s 0 , (10)

где s 0 - начальный путь для t = 0. Последнюю формулу необходимо запомнить.

Графические зависимости υ (t ) и s (t ) приведены на рис.4.

Для равнопеременного движения  = ∫а dt = а ∫ dt , отсюда

= а t +  0 , (11)

где  0 - начальная скорость при t =0.

Пройденный путь s = ∫dt = ∫(а t +  0)dt . Решая этот интеграл, получим

s = а t 2 /2 +  0 t + s 0 , (12)

где s 0 - начальный путь (для t = 0). Формулы (11), (12) рекомендуем запомнить.

Графические зависимости а (t ), υ (t ) и s (t ) приведены на рис.5.

К равнопеременному движению с ускорением свободного падения g = 9,81 м/с 2 относится свободное движение тел в вертикальной плоскости: вниз тела падают с g ›0, при движении вверх ускорение g ‹ 0. Скорость движения и пройденный путь при этом изменяется согласно (11):

 =  0 + g t ; (13)

h = g t 2 /2 +  0 t + h 0 . (14)

Рассмотрим движение тела, брошенного под углом к горизонту (мяч, камень, пушечный снаряд,…). Это сложное движение состоит из двух простых: по горизонтали вдоль оси ОХ и вертикали вдоль оси ОУ (рис.6). По горизонтальной оси в отсутствие сопротивления среды движение равномерное; по вертикальной оси - равнопеременное: равнозамедленное до максимальной точки подъема и равноускоренное после нее. Траектория движения имеет вид параболы. Пусть  0 - начальная скорость тела, брошенного под углом α к горизонту из точки А (начало координат). Ее составляющие по выбранным осям:

 0x =  x =  0 cos α = const ; (15)

 0у =  0 sinα. (16)

Согласно формуле (13) имеем для нашего примера в любой точке траектории до точки С

 у =  0у - g t =  0 sinα. - g t ;

 х =  0х =  0 cos α = const.

В наивысшей точке траектории, точке С , вертикальная составляющая скорости  у = 0. Отсюда можно найти время движения до точки С:

 у =  0у - g t =  0 sinα. - g t = 0 → t =  0 sinα/ g . (17)

Зная это время, можно определить максимальную высоту подъема тела по (14):

h max =  0у t - g t 2 /2= 0 sinα  0 sinα/g g ( 0 sinα /g ) 2 /2 = ( 0 sinα) 2 /(2g ) (18)

Поскольку траектория движения симметрична, то полное время движения до конечной точки В равно

t 1 =2 t = 2 0 sinα / g . (19)

Дальность полета АВ с учетом (15) и (19) определится так:

АВ =  х t 1 =  0 cosα 2 0 sinα/ g = 2 0 2 cosα sinα/ g . (20)

Полное ускорение движущегося тела в любой точке траектории равно ускорению свободного падения g ; его можно разложить на нормальное и тангенциальное, как было показано на рис.3.

Материальная точка. Система отсчета.

Механическим движением тела называется изменение с течением времени его положения относительно других тел.

Практически все физические явления сопровождаются движением тел. В физике есть специальный раздел, который изучает движение, – это механика .

Слово «механика» произошло от греческого «механэ» - машина, приспособление.

При действии разных машин и механизмов происходит движение их частей: рычагов, канатов, колес,... К механике так же относят нахождение условий, при которых тело находится в покое, - условий равновесия тел. Эти вопросы играют огромную роль в строительном деле. Двигаться могут не только материальные тела, но и солнечный зайчик, тень, световые сигналы, радиосигналы.

Для изучения движения необходимо уметь описывать движение. Нам не интересно как возникло это движение, нас интересует сам процесс. Раздел механики, который изучает движение без исследования причины, его вызывающего, называется кинематикой .

Движение каждого тела можно рассматривать по отношению к разным телам и относительно их данное тело будет совершать различные движения: чемодан, лежащий в вагоне на полке идущего поезда, относительно вагона – покоится, а относительно Земли – движется. Воздушный шар, уносимый ветром – относительно Земли – движется, а относительно воздуха - покоится. Самолет, летящий в эскадрильи, относительно других самолетов строя покоится, а относительно Земли движется с большой скоростью.

Поэтому всякое движение, а так же и покой тела – относительны.

Отвечая на вопрос, движется или покоится тело, мы должны указать относительно чего рассматриваем движение.

Тело, относительно которого рассматривается данное движение, называется телом отсчета.

С телом отсчета связывают систему координат и прибор для измерения времени. Вся эта совокупность образует систему отсчета .

Что значит описать движение? Это значит, что нужно определить:

1.траекторию, 2. скорость, 3. путь, 4. положение тела.

Очень просто дело обстоит с точкой. Из курса математики известно, что положение точки можно задать с помощью координат. А если мы имеем тело, которое имеет размер? У него каждая точка будет иметь свои координаты. Во многих случаях при рассмотрении движения тела, тело можно принимать за материальную точку, или точку, обладающую массой этого тела. А для точки можно единственным образом определить координаты.

Итак, материальная точка – это абстрактное понятие, которое вводится для упрощения решения задач.

Условие, при котором тело можно принять за материальную точку:

Часто можно тело принимать за материальную точку и при условии, что его размеры сопоставимы с пройденным путем, когда в любой момент времени все точки движутся одинаково. Этот вид движения называется поступательным.

Признаком поступательного движения является условие, что прямая, мысленно проведенная через любые две точки тела, остается параллельной самой себе.

Пример: человек движется на эскалаторе, игла в швейной машине , поршень в двигателе внутреннего сгорания, кузов машины при езде по прямой дороге.

Разные движения различаются между собой по виду траектории.

Если траектория прямая линия – то движение прямолинейное , если траектория – кривая линия, то движение криволинейное.

Перемещение.

Путь и перемещение: в чем разница?

S = AB + BC + CD

Перемещение – это вектор (или направленный отрезок), соединяющий начальное положение с его последующим положением.

Перемещение – векторная величина, а значит характеризуется двумя величинами: числовым значением или модулем и направлением.

Обозначается – S, и измеряется в метрах, (км, см, мм).

Если знать вектор перемещения, то можно однозначно определить положение тела.

Вектора и действия с векторами.

ОПРЕДЕЛЕНИЕ ВЕКТОРА

Вектором называется направленный отрезок, то есть отрезок, у которого указаны начало (наз. также точкой приложения вектора) и ко­нец.

МОДУЛЬ ВЕКТОРА

Длина направленного отрезка, изо­бражающего вектор, называется длиной, или модулем , вектора. Длина вектора обозначается .

НУЛЬ-ВЕКТОР

Нуль-вектор () - вектор, начало и конец которого совпадают; его модуль равен 0, а направление неопределенное.

КООРДИНАТНОЕ ПРЕДСТАВЛЕНИЕ

Пусть на плоскости задана декартова система координат XOY.

Тогда вектор может быть задан двумя числами:

https://pandia.ru/text/78/050/images/image010_22.gif" width="84" height="25 src=">

Эти числа https://pandia.ru/text/78/050/images/image012_18.gif" width="20" height="25 src="> в геометрии называют координатами вектора , а в физике – проекциями вектора на соответствующие оси координат.

Чтобы найти проекцию вектора надо: из начала и конца вектора опустить перпендикуляры на оси координат.

Тогда проекцией будет длина отрезка, заключенного между перпендикулярами.

Проекция может принимать как положительное, так и отрицательное значение.

Если проекция получилась со знаком «-«, то вектор направлен в противоположную сторону оси, на которую его спроектировали.

При таком определении вектора его модуль , а направление задается углом a, который однозначно определяется соотношениями:

https://pandia.ru/text/78/050/images/image015_13.gif" width="75" height="48 src=">

КОЛЛИНЕАРНЫЕ ВЕКТОРЫ

Д) шахматная фигура,

Е) люстра в комнате,

G) подводная лодка,

Y) самолет на взлетной полосе.

8. Путь или перемещение мы оплачиваем в поездке в такси?

9. Катер прошел по озеру в направлении на северо-восток 2 км, а затем в северном направлении еще 1 км. Найти геометрическим построение перемещение и его модуль.