Menu
For free
Registration
home  /  Relationship/ Rules for dividing fractions. Multiplying simple and mixed fractions with different denominators

Rules for dividing fractions. Multiplying simple and mixed fractions with different denominators

Multiplying and dividing fractions.

Attention!
There are additional
materials in Special Section 555.
For those who are very "not very..."
And for those who “very much…”)

This operation is much nicer than addition-subtraction! Because it's easier. As a reminder, to multiply a fraction by a fraction, you need to multiply the numerators (this will be the numerator of the result) and the denominators (this will be the denominator). That is:

For example:

Everything is extremely simple. And please don't look for a common denominator! There is no need for him here...

To divide a fraction by a fraction, you need to reverse second(this is important!) fraction and multiply them, i.e.:

For example:

If you come across multiplication or division with integers and fractions, it’s okay. As with addition, we make a fraction from a whole number with one in the denominator - and go ahead! For example:

In high school, you often have to deal with three-story (or even four-story!) fractions. For example:

How can I make this fraction look decent? Yes, very simple! Use two-point division:

But don't forget about the order of division! Unlike multiplication, this is very important here! Of course, we will not confuse 4:2 or 2:4. But it’s easy to make a mistake in a three-story fraction. Please note for example:

In the first case (expression on the left):

In the second (expression on the right):

Do you feel the difference? 4 and 1/9!

What determines the order of division? Either with brackets, or (as here) with the length of horizontal lines. Develop your eye. And if there are no brackets or dashes, like:

then divide and multiply in order, from left to right!

And another very simple and important technique. In actions with degrees, it will be so useful to you! Let's divide one by any fraction, for example, by 13/15:

The shot has turned over! And this always happens. When dividing 1 by any fraction, the result is the same fraction, only upside down.

That's it for operations with fractions. The thing is quite simple, but it gives more than enough errors. Note practical advice, and there will be fewer of them (errors)!

Practical tips:

1. The most important thing when working with fractional expressions is accuracy and attentiveness! These are not general words, not good wishes! This is a dire necessity! Do all calculations on the Unified State Exam as a full-fledged task, focused and clear. It’s better to write two extra lines in your draft than to mess up when doing mental calculations.

2. In examples with different types of fractions, we move on to ordinary fractions.

3. We reduce all fractions until they stop.

4. We reduce multi-level fractional expressions to ordinary ones using division through two points (we follow the order of division!).

5. Divide a unit by a fraction in your head, simply turning the fraction over.

Here are the tasks that you must definitely complete. Answers are given after all tasks. Use the materials on this topic and practical tips. Estimate how many examples you were able to solve correctly. The first time! Without a calculator! And draw the right conclusions...

Remember - the correct answer is received from the second (especially the third) time does not count! Such is the harsh life.

So, solve in exam mode ! This is already preparation for the Unified State Exam, by the way. We solve the example, check it, solve the next one. We decided everything - checked again from first to last. But only Then look at the answers.

Calculate:

Have you decided?

We are looking for answers that match yours. I deliberately wrote them down in disarray, away from temptation, so to speak... Here they are, the answers, written with semicolons.

0; 17/22; 3/4; 2/5; 1; 25.

Now we draw conclusions. If everything worked out, I’m happy for you! Basic calculations with fractions are not your problem! You can do more serious things. If not...

So you have one of two problems. Or both at once.) Lack of knowledge and (or) inattention. But this solvable Problems.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

) and denominator by denominator (we get the denominator of the product).

Formula for multiplying fractions:

For example:

Before you begin multiplying numerators and denominators, you need to check whether the fraction can be reduced. If you can reduce the fraction, it will be easier for you to make further calculations.

Dividing a common fraction by a fraction.

Dividing fractions involving natural numbers.

It's not as scary as it seems. As in the case of addition, we convert the integer into a fraction with one in the denominator. For example:

Multiplying mixed fractions.

Rules for multiplying fractions (mixed):

  • convert mixed fractions to improper fractions;
  • multiplying the numerators and denominators of fractions;
  • reduce the fraction;
  • if received improper fraction, then we convert the improper fraction to a mixed fraction.

Note! To multiply a mixed fraction by another mixed fraction, you first need to convert them to the form of improper fractions, and then multiply according to the rule for multiplying ordinary fractions.

The second way to multiply a fraction by a natural number.

It may be more convenient to use the second method of multiplication common fraction per number.

Note! To multiply a fraction by natural number It is necessary to divide the denominator of the fraction by this number, and leave the numerator unchanged.

From the example given above, it is clear that this option is more convenient to use when the denominator of a fraction is divided without a remainder by a natural number.

Multistory fractions.

In high school, three-story (or more) fractions are often encountered. Example:

To bring such a fraction to its usual form, use division through 2 points:

Note! When dividing fractions, the order of division is very important. Be careful, it's easy to get confused here.

Note, For example:

When dividing one by any fraction, the result will be the same fraction, only inverted:

Practical tips for multiplying and dividing fractions:

1. The most important thing when working with fractional expressions is accuracy and attentiveness. Do all calculations carefully and accurately, concentratedly and clearly. It's better to write a few extra lines in your draft than to get lost in mental calculations.

2. In tasks with different types of fractions, go to the type of ordinary fractions.

3. We reduce all fractions until it is no longer possible to reduce.

4. We transform multi-level fractional expressions into ordinary ones using division through 2 points.

5. Divide a unit by a fraction in your head, simply turning the fraction over.

1. To divide the first fraction by the second, you need to multiply the dividend by the number that is the inverse of the divisor.

For proper and improper fractions, the division rule is as follows:

To divide a common fraction, you must multiply the numerator of the dividend by the denominator of the divisor, and multiply the denominator of the dividend by the numerator of the divisor. We take the first product as the numerator, and the second as the denominator.

Dividing a fraction by a fraction.

To divide the 1st ordinary fraction by the second one, which is not equal to zero, you need to:

  • multiply the numerator of the 1st fraction by the denominator of the 2nd fraction and write the product in the numerator of the resulting fraction;
  • multiply the denominator of the 1st fraction by the numerator of the 2nd fraction and write the product in the denominator of the resulting fraction.

In other words, dividing fractions leads to multiplication.

To divide the 1st fraction by the second, you need to multiply the dividend (1st fraction) by the reciprocal fraction of the divisor.

Dividing a fraction by a number.

Schematically, dividing a fraction by a natural number looks like this:

To divide a fraction by a natural number, use the following method:

We express a natural number as an improper fraction with a numerator that is equal to the number itself and a denominator that is equal to 1.

Last time we learned how to add and subtract fractions (see lesson “Adding and subtracting fractions”). The most difficult part of those actions was bringing fractions to a common denominator.

Now it's time to deal with multiplication and division. Good news is that these operations are even simpler than addition and subtraction. First, let's consider the simplest case, when there are two positive fractions without a separated integer part.

To multiply two fractions, you must multiply their numerators and denominators separately. The first number will be the numerator new fraction, and the second is the denominator.

To divide two fractions, you need to multiply the first fraction by the “inverted” second fraction.

Designation:

From the definition it follows that dividing fractions reduces to multiplication. To “flip” a fraction, just swap the numerator and denominator. Therefore, throughout the lesson we will mainly consider multiplication.

As a result of multiplication, a reducible fraction can arise (and often does arise) - it, of course, must be reduced. If after all the reductions the fraction turns out to be incorrect, the whole part should be highlighted. But what definitely won't happen with multiplication is reduction to a common denominator: no criss-cross methods, greatest factors and least common multiples.

By definition we have:

Multiplying fractions with whole parts and negative fractions

If fractions contain an integer part, they must be converted to improper ones - and only then multiplied according to the schemes outlined above.

If there is a minus in the numerator of a fraction, in the denominator or in front of it, it can be taken out of the multiplication or removed altogether according to the following rules:

  1. Plus by minus gives minus;
  2. Two negatives make an affirmative.

Until now, these rules have only been encountered when adding and subtracting negative fractions, when it was necessary to get rid of the whole part. For a work, they can be generalized in order to “burn” several disadvantages at once:

  1. We cross out the negatives in pairs until they completely disappear. In extreme cases, one minus can survive - the one for which there was no mate;
  2. If there are no minuses left, the operation is completed - you can start multiplying. If the last minus is not crossed out because there was no pair for it, we take it outside the limits of multiplication. The result is a negative fraction.

Task. Find the meaning of the expression:

We convert all fractions to improper ones, and then take the minuses out of the multiplication. We multiply what is left according to the usual rules. We get:

Let me remind you once again that the minus sign that appears before the fraction with the highlighted whole part, refers specifically to the entire fraction, and not just to its whole part (this applies to the last two examples).

Also pay attention to negative numbers: when multiplying, they are enclosed in parentheses. This is done in order to separate the minuses from the multiplication signs and make the entire notation more accurate.

Reducing fractions on the fly

Multiplication is a very labor-intensive operation. The numbers here turn out to be quite large, and to simplify the problem, you can try to reduce the fraction further before multiplication. Indeed, in essence, the numerators and denominators of fractions are ordinary factors, and, therefore, they can be reduced using the basic property of a fraction. Take a look at the examples:

Task. Find the meaning of the expression:

By definition we have:

In all examples, the numbers that have been reduced and what remains of them are marked in red.

Please note: in the first case, the multipliers were reduced completely. In their place there remain units that, generally speaking, need not be written. In the second example, it was not possible to achieve a complete reduction, but the total amount of calculations still decreased.

However, never use this technique when adding and subtracting fractions! Yes, sometimes there are similar numbers that you just want to reduce. Here, look:

You can't do that!

The error occurs because when adding, the numerator of a fraction produces a sum, not a product of numbers. Consequently, it is impossible to apply the basic property of a fraction, since this property deals specifically with the multiplication of numbers.

There are simply no other reasons for reducing fractions, so the correct solution to the previous problem looks like this:

Correct solution:

As you can see, the correct answer turned out to be not so beautiful. In general, be careful.

A fraction is one or more parts of a whole, usually taken to be one (1). As with natural numbers, you can perform all basic arithmetic operations (addition, subtraction, division, multiplication) with fractions; to do this, you need to know the features of working with fractions and distinguish between their types. There are several types of fractions: decimal and ordinary, or simple. Each type of fraction has its own specifics, but once you thoroughly understand how to handle them, you will be able to solve any examples with fractions, since you will know the basic principles of performing arithmetic calculations with fractions. Let's look at examples of how to divide a fraction by a whole number using different types fractions.

How to divide a simple fraction by a natural number?
Ordinary or simple fractions are fractions that are written in the form of a ratio of numbers in which the dividend (numerator) is indicated at the top of the fraction, and the divisor (denominator) of the fraction is indicated at the bottom. How to divide such a fraction by a whole number? Let's look at an example! Let's say we need to divide 8/12 by 2.


To do this we must perform a number of actions:
Thus, if we are faced with the task of dividing a fraction by a whole number, the solution diagram will look something like this:


In a similar way, you can divide any ordinary (simple) fraction by an integer.

How to divide a decimal by a whole number?
A decimal is a fraction that is obtained by dividing a unit into ten, a thousand, and so on parts. Arithmetic operations with decimals are quite simple.

Let's look at an example of how to divide a fraction by a whole number. Let's say we need to divide the decimal fraction 0.925 by the natural number 5.


To summarize, let us dwell on two main points that are important when performing the operation of dividing decimal fractions by an integer:
  • for separation decimal Column division is used for a natural number;
  • A comma is placed in a quotient when the division of the whole part of the dividend is completed.
By applying these simple rules, you can always easily divide any decimal or simple fraction into a whole number.