Меню
Бесплатно
Главная  /  Истории успеха  /  Линейные неравенства, примеры, решения. Решение неравенств

Линейные неравенства, примеры, решения. Решение неравенств

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Определение 1

Линейное неравенство с одной переменной x – это неравенство вида a · x + b > 0 , когда вместо > используется любой знак неравенства < , ≤ , ≥ , а и b являются действительными числами, где a ≠ 0 .

Определение 2

Неравенства a · x < c или a · x > c , с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной .

Так как ничего не сказано за то, может ли коэффициент быть равным 0 , тогда строгое неравенство вида 0 · x > c и 0 · x < c может быть записано в виде нестрогого, а именно, a · x ≤ c , a · x ≥ c . Такое уравнение считается линейным.

Их различия заключаются в:

  • форме записи a · x + b > 0 в первом, и a · x > c – во втором;
  • допустимости равенства нулю коэффициента a , a ≠ 0 - в первом, и a = 0 - во втором.

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Определение 3

Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a · x + b < 0 , a · x + b > 0 , a · x + b ≤ 0 и a · x + b ≥ 0 , где a и b являются действительными числами. Вместо x может быть обычное число.

Исходя из правила, имеем, что 4 · x − 1 > 0 , 0 · z + 2 , 3 ≤ 0 , - 2 3 · x - 2 < 0 являются примерами линейных неравенств. А неравенства такого плана, как 5 · x > 7 , − 0 , 5 · y ≤ − 1 , 2 называют сводящимися к линейному.

Как решить линейное неравенство

Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x < p (≤ , > , ≥) , p являющееся некоторым числом, при a ≠ 0 , а вида a < p (≤ , > , ≥) при а = 0 .

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Чтобы решить линейное неравенство вида a · x + b < 0 (≤ , > , ≥) , необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.

Определение 4

Алгоритм решение линейного неравенства a · x + b < 0 (≤ , > , ≥) при a ≠ 0

  • число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a · x < − b (≤ , > , ≥) ;
  • будет производиться деление обеих частей неравенства на число не равное 0 . Причем, когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.

Рассмотрим применение данного алгоритма на решении примеров.

Пример 1

Решить неравенство вида 3 · x + 12 ≤ 0 .

Решение

Данное линейное неравенство имеет a = 3 и b = 12 . Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.

Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3 · x ≤ − 12 . Необходимо произвести деление обеих частей на 3 . Знак не поменяется, так как 3 является положительным числом. Получаем, что (3 · x) : 3 ≤ (− 12) : 3 , что даст результат x ≤ − 4 .

Неравенство вида x ≤ − 4 является равносильным. То есть решение для 3 · x + 12 ≤ 0 – это любое действительное число, которое меньше или равно 4 . Ответ записывается в виде неравенства x ≤ − 4 , или числового промежутка вида (− ∞ , − 4 ] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ: x ≤ − 4 или (− ∞ , − 4 ] .

Пример 2

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Решение

Из условия видим, что коэффициент a при z равняется - 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число - 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что (− 2 , 7 · z) : (− 2 , 7) < 0: (− 2 , 7) , и дальше z < 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z < 0 .

Ответ: z < 0 или (− ∞ , 0) .

Пример 3

Решить неравенство - 5 · x - 15 22 ≤ 0 .

Решение

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется - 5 , с коэффициентом b , которому соответствует дробь - 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести - 15 22 в другую часть с противоположным знаком, разделить обе части на - 5 , изменить знак неравенства:

5 · x ≤ 15 22 ; - 5 · x: - 5 ≥ 15 22: - 5 x ≥ - 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22: - 5 = - 15 22: 5 , после чего выполняем деление обыкновенной дроби на натурально число - 15 22: 5 = - 15 22 · 1 5 = - 15 · 1 22 · 5 = - 3 22 .

Ответ: x ≥ - 3 22 и [ - 3 22 + ∞) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b < 0 является неравенством 0 · x + b < 0 , где на рассмотрение берется неравенство вида b < 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b < 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b < 0 , где b < 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b < 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b < 0 (≤ , > , ≥) :

Определение 5

Числовое неравенство вида b < 0 (≤ , > , ≥) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Пример 4

Решить неравенство 0 · x + 7 > 0 .

Решение

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Ответ : промежуток (− ∞ , + ∞) .

Пример 5

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

Решение

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ: решений нет.

Рассмотрим решение линейных неравенств, где оба коэффициента равняется нулю.

Пример 6

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

Решение

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ : неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Определение 6

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b < 0 (≤ , > , ≥) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Пример 6

Решить неравенство − 3 · x + 12 > 0 .

Решение

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке (− ∞ , 4) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка (4 , + ∞) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 < 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид (− ∞ , 4) или x < 4 .

Ответ : (− ∞ , 4) или x < 4 .

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 < 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x < 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

Видно, что

Определение 7

  • решением неравенства 0 , 5 · x − 1 < 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х.

Определение 8

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b < 0 определяется промежуток, где график изображен ниже О х;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Пример 7

Решить неравенство - 5 · x - 3 > 0 при помощи графика.

Решение

Необходимо построить график линейной функции - 5 · x - 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х - 5 · x - 3 > 0 получим значение - 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х. Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч - ∞ , - 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки - 3 5 также являлось бы решением неравенства. И совпадало бы с О х.

Ответ : - ∞ , - 3 5 или x < - 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Пример 8

Определить из неравенств 0 · x + 7 < = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Решение

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х. Значит, 0 · x + 7 < = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х. Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ : второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · (x − 1) + 3 ≤ 4 · x − 2 + x , x - 3 5 - 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · (x − 1) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

Определение 9

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Пример 9

Решить неравенство 5 · (x + 3) + x ≤ 6 · (x − 3) + 1 .

Решение

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ : нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1 является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сегодня, друзья, не будет никаких соплей и сантиментов. Вместо них я без лишних вопросов отправлю вас в бой с одним из самых грозных противников в курсе алгебры 8—9 класса.

Да, вы всё правильно поняли: речь идёт о неравенствах с модулем. Мы рассмотрим четыре основных приёма, с помощью которых вы научитесь решать порядка 90% таких задач. А что с остальными 10%? Что ж, о них мы поговорим в отдельном уроке.:)

Однако перед тем, как разбирать какие-то там приёмы, хотелось бы напомнить два факта, которые уже необходимо знать. Иначе вы рискуете вообще не понять материал сегодняшнего урока.

Что уже нужно знать

Капитан Очевидность как бы намекает, что для решения неравенств с модулем необходимо знать две вещи:

  1. Как решаются неравенства;
  2. Что такое модуль.

Начнём со второго пункта.

Определение модуля

Тут всё просто. Есть два определения: алгебраическое и графическое. Для начала — алгебраическое:

Определение. Модуль числа $x$ — это либо само это число, если оно неотрицательно, либо число, ему противоположное, если исходный $x$ — всё-таки отрицателен.

Записывается это так:

\[\left| x \right|=\left\{ \begin{align} & x,\ x\ge 0, \\ & -x,\ x \lt 0. \\\end{align} \right.\]

Говоря простым языком, модуль — это «число без минуса». И именно в этой двойственности (где-то с исходным числом ничего не надо делать, а где-то придётся убрать какой-то там минус) и заключается вся сложность для начинающих учеников.

Есть ещё геометрическое определение. Его тоже полезно знать, но обращаться к нему мы будем лишь в сложных и каких-то специальных случаях, где геометрический подход удобнее алгебраического (спойлер: не сегодня).

Определение. Пусть на числовой прямой отмечена точка $a$. Тогда модулем $\left| x-a \right|$ называется расстояние от точки $x$ до точки $a$ на этой прямой.

Если начертить картинку, то получится что-то типа этого:


Графическое определение модуля

Так или иначе, из определения модуля сразу следует его ключевое свойство: модуль числа всегда является величиной неотрицательной . Этот факт будет красной нитью идти через всё наше сегодняшнее повествование.

Решение неравенств. Метод интервалов

Теперь разберёмся с неравенствами. Их существует великое множество, но наша задача сейчас — уметь решать хотя бы самые простые из них. Те, которые сводятся к линейным неравенствам, а также к методу интервалов.

На эту тему у меня есть два больших урока (между прочем, очень, ОЧЕНЬ полезных — рекомендую изучить):

  1. Метод интервалов для неравенств (особенно посмотрите видео);
  2. Дробно-рациональные неравенства — весьма объёмный урок, но после него у вас вообще не останется каких-либо вопросов.

Если вы всё это знаете, если фраза «перейдём от неравенства к уравнению» не вызывает у вас смутное желание убиться об стену, то вы готовы: добро пожаловать в ад к основной теме урока.:)

1. Неравенства вида «Модуль меньше функции»

Это одна из самых часто встречающихся задач с модулями. Требуется решить неравенство вида:

\[\left| f \right| \lt g\]

В роли функций $f$ и $g$ может выступать что угодно, но обычно это многочлены. Примеры таких неравенств:

\[\begin{align} & \left| 2x+3 \right| \lt x+7; \\ & \left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \left| {{x}^{2}}-2\left| x \right|-3 \right| \lt 2. \\\end{align}\]

Все они решаются буквально в одну строчку по схеме:

\[\left| f \right| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\{ \begin{align} & f \lt g, \\ & f \gt -g \\\end{align} \right. \right)\]

Нетрудно заметить, что избавляемся от модуля, но взамен получаем двойное неравенство (или, что тоже самое, систему из двух неравенств). Зато этот переход учитывает абсолютно все возможные проблемы: если число под модулем положительно, метод работает; если отрицательно — всё равно работает; и даже при самой неадекватной функции на месте $f$ или $g$ метод всё равно сработает.

Естественно, возникает вопрос: а проще нельзя? К сожалению, нельзя. В этом вся фишка модуля.

Впрочем, хватит философствовать. Давайте решим парочку задач:

Задача. Решите неравенство:

\[\left| 2x+3 \right| \lt x+7\]

Решение. Итак, перед нами классическое неравенство вида «модуль меньше» — даже преобразовывать нечего. Работаем по алгоритму:

\[\begin{align} & \left| f \right| \lt g\Rightarrow -g \lt f \lt g; \\ & \left| 2x+3 \right| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\\end{align}\]

Не торопитесь раскрывать скобки, перед которыми стоит «минус»: вполне возможно, что из-за спешки вы допустите обидную ошибку.

\[-x-7 \lt 2x+3 \lt x+7\]

\[\left\{ \begin{align} & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end{align} \right.\]

\[\left\{ \begin{align} & -3x \lt 10 \\ & x \lt 4 \\ \end{align} \right.\]

\[\left\{ \begin{align} & x \gt -\frac{10}{3} \\ & x \lt 4 \\ \end{align} \right.\]

Задача свелась к двум элементарным неравенствам. Отметим их решения на параллельных числовых прямых:

Пересечение множеств

Пересечением этих множеств и будет ответ.

Ответ: $x\in \left(-\frac{10}{3};4 \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Решение. Это задание уже чуть посложнее. Для начала уединим модуль, перенеся второе слагаемое вправо:

\[\left| {{x}^{2}}+2x-3 \right| \lt -3\left(x+1 \right)\]

Очевидно, перед нами вновь неравенство вида «модуль меньше», поэтому избавляемся от модуля по уже известному алгоритму:

\[-\left(-3\left(x+1 \right) \right) \lt {{x}^{2}}+2x-3 \lt -3\left(x+1 \right)\]

Вот сейчас внимание: кто-то скажет, что я немного извращенец со всеми этими скобками. Но ещё раз напомню, что наша ключевая цель — грамотно решить неравенство и получить ответ . Позже, когда вы в совершенстве освоите всё, о чём рассказано в этом уроке, можете сами извращаться как хотите: раскрывать скобки, вносить минусы и т.д.

А мы для начала просто избавимся от двойного минуса слева:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right)=3\left(x+1 \right)\]

Теперь раскроем все скобки в двойном неравенстве:

Переходим к двойному неравенству. В этот раз выкладки будут посерьёзнее:

\[\left\{ \begin{align} & {{x}^{2}}+2x-3 \lt -3x-3 \\ & 3x+3 \lt {{x}^{2}}+2x-3 \\ \end{align} \right.\]

\[\left\{ \begin{align} & {{x}^{2}}+5x \lt 0 \\ & {{x}^{2}}-x-6 \gt 0 \\ \end{align} \right.\]

Оба неравенства являются квадратными и решаются методом интервалов (потому и говорю: если не знаете, что это такое, лучше пока не браться за модули). Переходим к уравнению в первом неравенстве:

\[\begin{align} & {{x}^{2}}+5x=0; \\ & x\left(x+5 \right)=0; \\ & {{x}_{1}}=0;{{x}_{2}}=-5. \\\end{align}\]

Как видим, на выходе получилось неполное квадратное уравнение, которое решается элементарно. Теперь разберёмся со вторым неравенством системы. Там придётся применить теорему Виета:

\[\begin{align} & {{x}^{2}}-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \\& {{x}_{1}}=3;{{x}_{2}}=-2. \\\end{align}\]

Отмечаем полученные числа на двух параллельных прямых (отдельная для первого неравенства и отдельная для второго):

Опять же, поскольку мы решаем систему неравенств, нас интересует пересечение заштрихованных множеств: $x\in \left(-5;-2 \right)$. Это и есть ответ.

Ответ: $x\in \left(-5;-2 \right)$

Думаю, после этих примеров схема решения предельно ясна:

  1. Уединить модуль, перенеся все другие слагаемые в противоположную часть неравенства. Таким образом мы получим неравенство вида $\left| f \right| \lt g$.
  2. Решить это неравенство, избавившись от модуля по описанной выше схеме. В какой-то момент потребуется перейти от двойного неравенства к системе из двух самостоятельных выражений, каждое из которых уже можно решать отдельно.
  3. Наконец, останется лишь пересечь решения этих двух самостоятельных выражений — и всё, мы получим окончательный ответ.

Аналогичный алгоритм существует и для неравенств следующего типа, когда модуль больше функции. Однако там есть парочка серьёзных «но». Об этих «но» мы сейчас и поговорим.

2. Неравенства вида «Модуль больше функции»

Выглядят они так:

\[\left| f \right| \gt g\]

Похоже на предыдущее? Похоже. И тем не менее решаются такие задачи совсем по-другому. Формально схема следующая:

\[\left| f \right| \gt g\Rightarrow \left[ \begin{align} & f \gt g, \\ & f \lt -g \\\end{align} \right.\]

Другими словами, мы рассматриваем два случая:

  1. Сначала просто игнорируем модуль — решаем обычное неравенство;
  2. Затем по сути раскрываем модуль со знаком «минус», а затем умножаем обе части неравенства на −1, меня при этом знак.

При этом варианты объединены квадратной скобкой, т.е. перед нами совокупность двух требований.

Обратите внимание ещё раз: перед нами не система, а совокупность, поэтому в ответе множества объединяются, а не пересекаются . Это принципиальное отличие от предыдущего пункта!

Вообще, с объединениями и пересечениями у многих учеников сплошная путаница, поэтому давайте разберёмся в этом вопросе раз и навсегда:

  • «∪» — это знак объединения. По сути, это стилизованная буква «U», которая пришла к нам из английского языка и является аббревиатурой от «Union», т.е. «Объединения».
  • «∩» — это знак пересечения. Эта хрень ниоткуда не пришла, а просто возникла как противопоставление к «∪».

Чтобы ещё проще было запомнить, просто пририсуйте к этим знакам ножки, чтобы получились бокалы (вот только не надо сейчас обвинять меня в пропаганде наркомании и алкоголизма: если вы всерьёз изучаете этот урок, то вы уже наркоман):

Разница между пересечением и объединением множеств

В переводе на русский это означает следующее: объединение (совокупность) включает в себя элементы из обоих множеств, поэтому никак не меньше каждого из них; а вот пересечение (система) включает в себя лишь те элементы, которые одновременно находятся и в первом множестве, и во втором. Поэтому пересечение множеств никогда не бывает больше множеств-исходников.

Так стало понятнее? Вот и отлично. Переходим к практике.

Задача. Решите неравенство:

\[\left| 3x+1 \right| \gt 5-4x\]

Решение. Действуем по схеме:

\[\left| 3x+1 \right| \gt 5-4x\Rightarrow \left[ \begin{align} & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\\end{align} \right.\]

Решаем каждое неравенство совокупности:

\[\left[ \begin{align} & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end{align} \right.\]

\[\left[ \begin{align} & 7x \gt 4 \\ & -x \lt -6 \\ \end{align} \right.\]

\[\left[ \begin{align} & x \gt 4/7\ \\ & x \gt 6 \\ \end{align} \right.\]

Отмечаем каждое полученное множество на числовой прямой, а затем объединяем их:

Объединение множеств

Совершенно очевидно, что ответом будет $x\in \left(\frac{4}{7};+\infty \right)$

Ответ: $x\in \left(\frac{4}{7};+\infty \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\]

Решение. Ну что? Да ничего — всё то же самое. Переходим от неравенства с модулем к совокупности двух неравенств:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\Rightarrow \left[ \begin{align} & {{x}^{2}}+2x-3 \gt x \\ & {{x}^{2}}+2x-3 \lt -x \\\end{align} \right.\]

Решаем каждое неравенство. К сожалению, корни там будут не оч:

\[\begin{align} & {{x}^{2}}+2x-3 \gt x; \\ & {{x}^{2}}+x-3 \gt 0; \\ & D=1+12=13; \\ & x=\frac{-1\pm \sqrt{13}}{2}. \\\end{align}\]

Во втором неравенстве тоже немного дичи:

\[\begin{align} & {{x}^{2}}+2x-3 \lt -x; \\ & {{x}^{2}}+3x-3 \lt 0; \\ & D=9+12=21; \\ & x=\frac{-3\pm \sqrt{21}}{2}. \\\end{align}\]

Теперь нужно отметить эти числа на двух осях — по одной оси для каждого неравенства. Однако отмечать точки нужно в правильном порядке: чем больше число, тем дальше сдвигам точку вправо.

И вот тут нас ждёт подстава. Если с числами $\frac{-3-\sqrt{21}}{2} \lt \frac{-1-\sqrt{13}}{2}$ всё ясно (слагаемые в числителе первой дроби меньше слагаемых в числителе второй, поэтому сумма тоже меньше), с числами $\frac{-3-\sqrt{13}}{2} \lt \frac{-1+\sqrt{21}}{2}$ тоже не возникнет затруднений (положительное число заведомо больше отрицательного), то вот с последней парочкой всё не так однозначно. Что больше: $\frac{-3+\sqrt{21}}{2}$ или $\frac{-1+\sqrt{13}}{2}$? От ответа на этот вопрос будет зависеть расстановка точек на числовых прямых и, собственно, ответ.

Поэтому давайте сравнивать:

\[\begin{matrix} \frac{-1+\sqrt{13}}{2}\vee \frac{-3+\sqrt{21}}{2} \\ -1+\sqrt{13}\vee -3+\sqrt{21} \\ 2+\sqrt{13}\vee \sqrt{21} \\\end{matrix}\]

Мы уединили корень, получили неотрицательные числа с обеих сторон неравенства, поэтому вправе возвести обе стороны в квадрат:

\[\begin{matrix} {{\left(2+\sqrt{13} \right)}^{2}}\vee {{\left(\sqrt{21} \right)}^{2}} \\ 4+4\sqrt{13}+13\vee 21 \\ 4\sqrt{13}\vee 3 \\\end{matrix}\]

Думаю, тут и ежу понятно, что $4\sqrt{13} \gt 3$, поэтому $\frac{-1+\sqrt{13}}{2} \gt \frac{-3+\sqrt{21}}{2}$, окончательно точки на осях будут расставлены вот так:

Случай некрасивых корней

Напомню, мы решаем совокупность, поэтому в ответ пойдёт объединение, а не пересечение заштрихованных множеств.

Ответ: $x\in \left(-\infty ;\frac{-3+\sqrt{21}}{2} \right)\bigcup \left(\frac{-1+\sqrt{13}}{2};+\infty \right)$

Как видите, наша схема прекрасно работает как для простых задач, так и для весьма жёстких. Единственное «слабое место» в таком подходе — нужно грамотно сравнивать иррациональные числа (и поверьте: это не только корни). Но вопросам сравнения будет посвящён отдельный (и очень серьёзный урок). А мы идём дальше.

3. Неравенства с неотрицательными «хвостами»

Вот мы и добрались до самого интересного. Это неравенства вида:

\[\left| f \right| \gt \left| g \right|\]

Вообще говоря, алгоритм, о котором мы сейчас поговорим, верен н только для модуля. Он работает во всех неравенствах, где слева и справа стоят гарантированно неотрицательные выражения:

Что делать с этими задачами? Просто помните:

В неравенствах с неотрицательными «хвостами» можно возводить обе части в любую натуральную степень. Никаких дополнительных ограничений при этом не возникнет.

Прежде всего нас будет интересовать возведение в квадрат — он сжигает модули и корни:

\[\begin{align} & {{\left(\left| f \right| \right)}^{2}}={{f}^{2}}; \\ & {{\left(\sqrt{f} \right)}^{2}}=f. \\\end{align}\]

Вот только не надо путать это с извлечением корня из квадрата:

\[\sqrt{{{f}^{2}}}=\left| f \right|\ne f\]

Бесчисленное множество ошибок было допущено в тот момент, когда ученик забывал ставить модуль! Но это совсем другая история (это как бы иррациональные уравнения), поэтому не будем сейчас в это углубляться. Давайте лучше решим парочку задач:

Задача. Решите неравенство:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Решение. Сразу заметим две вещи:

  1. Это нестрогое неравенство. Точки на числовой прямой будут выколоты.
  2. Обе стороны неравенства заведомо неотрицательны (это свойство модуля: $\left| f\left(x \right) \right|\ge 0$).

Следовательно, можем возвести обе части неравенства в квадрат, чтобы избавиться от модуля и решать задачу обычным методом интервалов:

\[\begin{align} & {{\left(\left| x+2 \right| \right)}^{2}}\ge {{\left(\left| 1-2x \right| \right)}^{2}}; \\ & {{\left(x+2 \right)}^{2}}\ge {{\left(2x-1 \right)}^{2}}. \\\end{align}\]

На последнем шаге я слегка схитрил: поменял последовательность слагаемых, воспользовавшись чётностью модуля (по сути, умножил выражение $1-2x$ на −1).

\[\begin{align} & {{\left(2x-1 \right)}^{2}}-{{\left(x+2 \right)}^{2}}\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \right) \right)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\\end{align}\]

Решаем методом интервалов. Переходим от неравенства к уравнению:

\[\begin{align} & \left(x-3 \right)\left(3x+1 \right)=0; \\ & {{x}_{1}}=3;{{x}_{2}}=-\frac{1}{3}. \\\end{align}\]

Отмечаем найденные корни на числовой прямой. Ещё раз: все точки закрашены, поскольку исходное неравенство — нестрогое!

Избавление от знака модуля

Напомню для особо упоротых: знаки мы берём из последнего неравенства, которое было записано перед переходом к уравнению. И закрашиваем области, требуемые в том же неравенстве. В нашем случае это $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Ну вот и всё. Задача решена.

Ответ: $x\in \left[ -\frac{1}{3};3 \right]$.

Задача. Решите неравенство:

\[\left| {{x}^{2}}+x+1 \right|\le \left| {{x}^{2}}+3x+4 \right|\]

Решение. Делаем всё то же самое. Я не буду комментировать — просто посмотрите на последовательность действий.

Возводим в квадрат:

\[\begin{align} & {{\left(\left| {{x}^{2}}+x+1 \right| \right)}^{2}}\le {{\left(\left| {{x}^{2}}+3x+4 \right| \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}\le {{\left({{x}^{2}}+3x+4 \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}-{{\left({{x}^{2}}+3x+4 \right)}^{2}}\le 0; \\ & \left({{x}^{2}}+x+1-{{x}^{2}}-3x-4 \right)\times \\ & \times \left({{x}^{2}}+x+1+{{x}^{2}}+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)\le 0. \\\end{align}\]

Метод интервалов:

\[\begin{align} & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)=0 \\ & -2x-3=0\Rightarrow x=-1,5; \\ & 2{{x}^{2}}+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing . \\\end{align}\]

Всего один корень на числовой прямой:

Ответ — целый интервал

Ответ: $x\in \left[ -1,5;+\infty \right)$.

Небольшое замечание насчёт последней задачи. Как точно подметил один мой ученик, оба подмодульных выражения в данном неравенстве заведомо положительны, поэтому знак модуля можно без ущерба для здоровья опустить.

Но это уже совсем другой уровень размышлений и другой подход — его условно можно назвать методом следствий. О нём — в отдельном уроке. А сейчас перейдём к финальной части сегодняшнего урока и рассмотрим универсальный алгоритм, который работает всегда. Даже тогда, когда все предыдущие подходы оказались бессильны.:)

4. Метод перебора вариантов

А что, если все эти приёмы не помогут? Если неравенство не сводится неотрицательным хвостам, если уединить модуль не получается, если вообще боль-печаль-тоска?

Тогда на сцену выходит «тяжёлая артиллерия» всей математики — метод перебора. Применительно к неравенствам с модулем выглядит он так:

  1. Выписать все подмодульные выражения и приравнять их к нулю;
  2. Решить полученные уравнения и отметить найденные корни на одной числовой прямой;
  3. Прямая разобьётся на несколько участков, внутри которого каждый модуль имеет фиксированный знак и потому однозначно раскрывается;
  4. Решить неравенство на каждом таком участке (можно отдельно рассмотреть корни-границы, полученные в пункте 2 — для надёжности). Результаты объединить — это и будет ответ.:)

Ну как? Слабо? Легко! Только долго. Посмотрим на практике:

Задача. Решите неравенство:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac{3}{2}\]

Решение. Эта хрень не сводится к неравенствам вида $\left| f \right| \lt g$, $\left| f \right| \gt g$ или $\left| f \right| \lt \left| g \right|$, поэтому действуем напролом.

Выписываем подмодульные выражения, приравниваем их к нулю и находим корни:

\[\begin{align} & x+2=0\Rightarrow x=-2; \\ & x-1=0\Rightarrow x=1. \\\end{align}\]

Итого у нас два корня, которые разбивают числовую прямую на три участка, внутри которых каждый модуль раскрывается однозначно:

Разбиение числовой прямой нулями подмодульных функций

Рассмотрим каждый участок отдельно.

1. Пусть $x \lt -2$. Тогда оба подмодульных выражения отрицательны, и исходное неравенство перепишется так:

\[\begin{align} & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1,5 \\ & -x-2 \lt -x+1+x-1,5 \\ & x \gt 1,5 \\\end{align}\]

Получили довольно простое ограничение. Пересечём его с исходным предположением, что $x \lt -2$:

\[\left\{ \begin{align} & x \lt -2 \\ & x \gt 1,5 \\\end{align} \right.\Rightarrow x\in \varnothing \]

Очевидно, что переменная $x$ не может одновременно быть меньше −2, но больше 1,5. Решений на этом участке нет.

1.1. Отдельно рассмотрим пограничный случай: $x=-2$. Просто подставим это число в исходное неравенство и проверим: выполняется ли оно?

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=-2}} \\ & 0 \lt \left| -3 \right|-2-1,5; \\ & 0 \lt 3-3,5; \\ & 0 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Очевидно, что цепочка вычислений привела нас к неверному неравенству. Следовательно, исходное неравенство тоже неверно, и $x=-2$ не входит в ответ.

2. Пусть теперь $-2 \lt x \lt 1$. Левый модуль уже раскроется с «плюсом», но правый — всё ещё с «минусом». Имеем:

\[\begin{align} & x+2 \lt -\left(x-1 \right)+x-1,5 \\ & x+2 \lt -x+1+x-1,5 \\& x \lt -2,5 \\\end{align}\]

Снова пересекаем с исходным требованием:

\[\left\{ \begin{align} & x \lt -2,5 \\ & -2 \lt x \lt 1 \\\end{align} \right.\Rightarrow x\in \varnothing \]

И снова пустое множество решений, поскольку нет таких чисел, которые одновременно меньше −2,5, но больше −2.

2.1. И вновь частный случай: $x=1$. Подставляем в исходное неравенство:

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=1}} \\ & \left| 3 \right| \lt \left| 0 \right|+1-1,5; \\ & 3 \lt -0,5; \\ & 3 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Аналогично предыдущему «частному случаю», число $x=1$ явно не входит в ответ.

3. Последний кусок прямой: $x \gt 1$. Тут все модули раскрываются со знаком «плюс»:

\[\begin{align} & x+2 \lt x-1+x-1,5 \\ & x+2 \lt x-1+x-1,5 \\ & x \gt 4,5 \\\end{align}\]

И вновь пересекаем найденное множество с исходным ограничением:

\[\left\{ \begin{align} & x \gt 4,5 \\ & x \gt 1 \\\end{align} \right.\Rightarrow x\in \left(4,5;+\infty \right)\]

Ну наконец-то! Мы нашли интервал, который и будет ответом.

Ответ: $x\in \left(4,5;+\infty \right)$

Напоследок — одно замечание, которое, возможно, убережёт вас от глупых ошибок при решении реальных задач:

Решения неравенств с модулями обычно представляют собой сплошные множества на числовой прямой — интервалы и отрезки. Гораздо реже встречаются изолированные точки. И ещё реже случается так, что границ решения (конец отрезка) совпадает с границей рассматриваемого диапазона.

Следовательно, если границы (те самые «частные случаи») не входят в ответ, то почти наверняка не войдут в ответ и области слева-справа от этих границ. И напротив: граница вошла в ответ — значит, и какие-то области вокруг неё тоже будут ответами.

Помните об этом, когда проверяете свои решения.

Для начала — немного лирики, чтобы почувствовать проблему, которую решает метод интервалов. Допустим, нам надо решить вот такое неравенство:

(x − 5)(x + 3) > 0

Какие есть варианты? Первое, что приходит в голову большинству учеников — это правила «плюс на плюс дает плюс» и «минус на минус дает плюс». Поэтому достаточно рассмотреть случай, когда обе скобки положительны: x − 5 > 0 и x + 3 > 0. Затем также рассмотрим случай, когда обе скобки отрицательны: x − 5 < 0 и x + 3 < 0. Таким образом, наше неравенство свелось к совокупности двух систем, которая, впрочем, легко решается:

Более продвинутые ученики вспомнят (может быть), что слева стоит квадратичная функция, график которой — парабола. Причем эта парабола пересекает ось OX в точках x = 5 и x = −3. Для дальнейшей работы надо раскрыть скобки. Имеем:

x 2 − 2x − 15 > 0

Теперь понятно, что ветви параболы направлены вверх, т.к. коэффициент a = 1 > 0. Попробуем нарисовать схему этой параболы:

Функция больше нуля там, где она проходит выше оси OX . В нашем случае это интервалы (−∞ −3) и (5; +∞) — это и есть ответ.

Обратите внимание: на рисунке изображена именно схема функции , а не ее график. Потому что для настоящего графика надо считать координаты, рассчитывать смещения и прочую хрень, которая нам сейчас совершенно ни к чему.

Почему эти методы неэффективны?

Итак, мы рассмотрели два решения одного и того же неравенства. Оба они оказались весьма громоздкими. В первом решении возникает — вы только вдумайтесь! — совокупность систем неравенств. Второе решение тоже не особо легкое: нужно помнить график параболы и еще кучу мелких фактов.

Это было очень простое неравенство. В нем всего 2 множителя. А теперь представьте, что множителей будет не 2, а хотя бы 4. Например:

(x − 7)(x − 1)(x + 4)(x + 9) < 0

Как решать такое неравенство? Перебирать все возможные комбинации плюсов и минусов? Да мы уснем быстрее, чем найдем решение. Рисовать график — тоже не вариант, поскольку непонятно, как ведет себя такая функция на координатной плоскости.

Для таких неравенств нужен специальный алгоритм решения, который мы сегодня и рассмотрим.

Что такое метод интервалов

Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f (x ) > 0 и f (x ) < 0. Алгоритм состоит из 4 шагов:

  1. Решить уравнение f (x ) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
  2. Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
  3. Выяснить знак (плюс или минус) функции f (x ) на самом правом интервале. Для этого достаточно подставить в f (x ) любое число, которое будет правее всех отмеченных корней;
  4. Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.

Вот и все! После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f (x ) > 0, или знаком «−», если неравенство имеет вид f (x ) < 0.

На первый взгляд может показаться, что метод интервалов — это какая-то жесть. Но на практике все будет очень просто. Стоит чуть-чуть потренироваться — и все станет понятно. Взгляните на примеры — и убедитесь в этом сами:

Задача. Решите неравенство:

(x − 2)(x + 7) < 0

Работаем по методу интервалов. Шаг 1: заменяем неравенство уравнением и решаем его:

(x − 2)(x + 7) = 0

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю:

x − 2 = 0 ⇒ x = 2;
x + 7 = 0 ⇒ x = −7.

Получили два корня. Переходим к шагу 2: отмечаем эти корни на координатной прямой. Имеем:

Теперь шаг 3: находим знак функции на самом правом интервале (правее отмеченной точки x = 2). Для этого надо взять любое число, которое больше числа x = 2. Например, возьмем x = 3 (но никто не запрещает взять x = 4, x = 10 и даже x = 10 000). Получим:

f (x ) = (x − 2)(x + 7);
x = 3;
f (3) = (3 − 2)(3 + 7) = 1 · 10 = 10;

Получаем, что f (3) = 10 > 0, поэтому в самом правом интервале ставим знак плюс.

Переходим к последнему пункту — надо отметить знаки на остальных интервалах. Помним, что при переходе через каждый корень знак должен меняться. Например, справа от корня x = 2 стоит плюс (мы убедились в этом на предыдущем шаге), поэтому слева обязан стоять минус.

Этот минус распространяется на весь интервал (−7; 2), поэтому справа от корня x = −7 стоит минус. Следовательно, слева от корня x = −7 стоит плюс. Осталось отметить эти знаки на координатной оси. Имеем:

Вернемся к исходному неравенству, которое имело вид:

(x − 2)(x + 7) < 0

Итак, функция должна быть меньше нуля. Значит, нас интересует знак минус, который возникает лишь на одном интервале: (−7; 2). Это и будет ответ.

Задача. Решите неравенство:

(x + 9)(x − 3)(1 − x ) < 0

Шаг 1: приравниваем левую часть к нулю:

(x + 9)(x − 3)(1 − x ) = 0;
x + 9 = 0 ⇒ x = −9;
x − 3 = 0 ⇒ x = 3;
1 − x = 0 ⇒ x = 1.

Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Именно поэтому мы вправе приравнять к нулю каждую отдельную скобку.

Шаг 2: отмечаем все корни на координатной прямой:

Шаг 3: выясняем знак самого правого промежутка. Берем любое число, которое больше, чем x = 1. Например, можно взять x = 10. Имеем:

f (x ) = (x + 9)(x − 3)(1 − x );
x = 10;
f (10) = (10 + 9)(10 − 3)(1 − 10) = 19 · 7 · (−9) = − 1197;
f (10) = −1197 < 0.

Шаг 4: расставляем остальные знаки. Помним, что при переходе через каждый корень знак меняется. В итоге наша картинка будет выглядеть следующим образом:

Вот и все. Осталось лишь выписать ответ. Взгляните еще раз на исходное неравенство:

(x + 9)(x − 3)(1 − x ) < 0

Это неравенство вида f (x ) < 0, т.е. нас интересуют интервалы, отмеченные знаком минус. А именно:

x ∈ (−9; 1) ∪ (3; +∞)

Это и есть ответ.

Замечание по поводу знаков функции

Практика показывает, что наибольшие трудности в методе интервалов возникают на последних двух шагах, т.е. при расстановке знаков. Многие ученики начинают путаться: какие надо брать числа и где ставить знаки.

Чтобы окончательно разобраться в методе интервалов, рассмотрим два замечания, на которых он построен:

  1. Непрерывная функция меняет знак только в тех точках, где она равна нулю . Такие точки разбивают координатную ось на куски, внутри которых знак функции никогда не меняется. Вот зачем мы решаем уравнение f (x ) = 0 и отмечаем найденные корни на прямой. Найденные числа — это «пограничные» точки, отделяющие плюсы от минусов.
  2. Чтобы выяснить знак функции на каком-либо интервале, достаточно подставить в функцию любое число из этого интервала. Например, для интервала (−5; 6) мы вправе брать x = −4, x = 0, x = 4 и даже x = 1,29374, если нам захочется. Почему это важно? Да потому что многих учеников начинают грызть сомнения. Мол, что если для x = −4 мы получим плюс, а для x = 0 — минус? А ничего — такого никогда не будет. Все точки на одном интервале дают один и тот же знак. Помните об этом.

Вот и все, что нужно знать про метод интервалов. Конечно, мы разобрали его в самом простом варианте. Существуют более сложные неравенства — нестрогие, дробные и с повторяющимися корнями. Для них тоже можно применять метод интервалов, но это тема для отдельного большого урока.

Теперь хотел бы разобрать продвинутый прием, который резко упрощает метод интервалов. Точнее, упрощение затрагивает только третий шаг — вычисление знака на самом правом куске прямой. По каким-то причинам этот прием не проходят в школах (по крайней мере, мне никто такого не объяснял). А зря — ведь на самом деле этот алгоритм очень прост.

Итак, знак функции на правом куске числовой оси. Этот кусок имеет вид (a ; +∞), где a — самый большой корень уравнения f (x ) = 0. Чтобы не взрывать мозг, рассмотрим конкретный пример:

(x − 1)(2 + x )(7 − x ) < 0;
f (x ) = (x − 1)(2 + x )(7 − x );
(x − 1)(2 + x )(7 − x ) = 0;
x − 1 = 0 ⇒ x = 1;
2 + x = 0 ⇒ x = −2;
7 − x = 0 ⇒ x = 7;

Мы получили 3 корня. Перечислим их в порядке возрастания: x = −2, x = 1 и x = 7. Очевидно, что наибольший корень — это x = 7.

Для тех, кому легче рассуждать графически, я отмечу эти корни на координатной прямой. Посмотрим, что получится:

Требуется найти знак функции f (x ) на самом правом интервале, т.е. на (7; +∞). Но как мы уже отмечали, для определения знака можно взять любое число из этого интервала. Например, можно взять x = 8, x = 150 и т.д. А теперь — тот самый прием, который не проходят в школах: давайте в качестве числа возьмем бесконечность. Точнее, плюс бесконечность , т.е. +∞.

«Ты че, обкурился? Как можно подставить в функцию бесконечность?» — возможно, спросите вы. Но задумайтесь: нам ведь не нужно само значение функции, нам нужен только знак. Поэтому, например, значения f (x ) = −1 и f (x ) = −938 740 576 215 значат одно и то же: функция на данном интервале отрицательна. Поэтому все, что от вас требуется — найти знак, который возникает на бесконечности, а не значение функции.

На самом деле, подставлять бесконечность очень просто. Вернемся к нашей функции:

f (x ) = (x − 1)(2 + x )(7 − x )

Представьте, что x — это очень большое число. Миллиард или даже триллион. Теперь посмотрим, что будет происходить в каждой скобке.

Первая скобка: (x − 1). Что будет, если из миллиарда вычесть единицу? Получится число, не особо отличающееся от миллиарда, и это число будет положительным. Аналогично со второй скобкой: (2 + x ). Если к двойке прибавить миллиард, по получим миллиард с копейками — это положительное число. Наконец, третья скобка: (7 − x ). Здесь будет минус миллиард, от которого «отгрызли» жалкий кусочек в виде семерки. Т.е. полученное число мало чем будет отличаться от минус миллиарда — оно будет отрицательным.

Осталось найти знак всего произведения. Поскольку в первых скобках у нас был плюс, а в последней — минус, получаем следующую конструкцию:

(+) · (+) · (−) = (−)

Итоговый знак — минус! И неважно, чему равно значение самой функции. Главное, что это значение — отрицательное, т.е. на самом правом интервале стоит знак минус. Осталось выполнить четвертый шаг метода интервалов: расставить все знаки. Имеем:

Исходное неравенство имело вид:

(x − 1)(2 + x )(7 − x ) < 0

Следовательно, нас интересуют интервалы, отмеченные знаком минус. Выписываем ответ:

x ∈ (−2; 1) ∪ (7; +∞)

Вот и весь прием, который я хотел рассказать. В заключение — еще одно неравенство, которое решается методом интервалов с привлечением бесконечности. Чтобы визуально сократить решение, я не буду писать номера шагов и развернутые комментарии. Напишу только то, что действительно надо писать при решении реальных задач:

Задача. Решите неравенство:

x (2x + 8)(x − 3) > 0

Заменяем неравенство уравнением и решаем его:

x (2x + 8)(x − 3) = 0;
x = 0;
2x + 8 = 0 ⇒ x = −4;
x − 3 = 0 ⇒ x = 3.

Отмечаем все три корня на координатной прямой (сразу со знаками):

Справа на координатной оси стоит плюс, т.к. функция имеет вид:

f (x ) = x (2x + 8)(x − 3)

А если подставить бесконечность (например, миллиард), получим три положительных скобки. Поскольку исходное выражение должно быть больше нуля, нас интересуют только плюсы. Осталось выписать ответ:

x ∈ (−4; 0) ∪ (3; +∞)

Линейными называются неравенства левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1 -х+3; 7х 0;

5 >4 - 6x 9- x < x + 5 .

1) Строгие неравенства: ax +b>0 либо ax + b<0

2) Нестрогие неравенства: ax +b≤0 либо ax + b 0

Разберем такое задание . Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным. Поэтому есть важное понятие, вот эти стрелочки <=> - это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными, или эквивалентными , если они не изменяет множества решений.

Сходные правила решения неравенств.

Если какое-либо слагаемое переместить из одной части неравенства в другую, заменив при этом его знак на противоположный, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, заменив при этом знак неравенства на противоположный, то получим неравенство, эквивалентное данному.

Используя эти правила вычислим нижеследующие неравенства.

1) Разберем неравенство 2x - 5 > 9 .

Это линейное неравенство , найдем его решение и обсудим основные понятия.

2x - 5 > 9 <=> 2x > 14 (5 перенесли в левую часть с противоположным знаком), далее поделили все на 2 и имеем x > 7 . Нанесем множество решений на ось x

Нами получен положительно направленный луч. Отметим множество решений либо в виде неравенства x > 7 , либо в виде интервала х(7; ∞). А что выступает частным решением этого неравенства? Например, x = 10 - это частное решение этого неравенства, x = 12 - это тоже частное решение этого неравенства.

Частных решений много, но наша задача - найти все решения. А решений, как правило, бесчисленное множество.

Разберем пример 2:

2) Решить неравенство 4a - 11 > a + 13 .

Решим его: а переместим в одну сторону, 11 переместим в другую сторону, получим 3a < 24, и в результате после деления обеих частей на 3 неравенство имеет вид a<8 .

4a - 11 > a + 13 <=> 3a < 24 <=> a < 8 .

Тоже отобразим множество a < 8 , но уже на оси а .

Ответ либо пишем в виде неравенства a < 8, либо а (-∞;8), 8 не включается.

Неравенство – это числовое соотношение, иллюстрирующее величину чисел относительно друг друга. Неравенства широко используются при поиске величин в прикладных науках. Наш калькулятор поможет вам разобраться с такой непростой темой, как решение линейных неравенств.

Что такое неравенство

Неравные соотношения в реальной жизни соотносятся с постоянным сравнением различных объектов: выше или ниже, дальше или ближе, тяжелее или легче. Интуитивно или зрительно мы можем понять, что один объект больше, выше или тяжелее другого, однако фактически речь всегда идет о сравнении чисел, которые характеризуют соответствующие величины. Сравнивать объекты можно по любому признаку и в любом случае мы можем составить числовое неравенство.

Если неизвестные величины при конкретных условиях равны, то для их численного определения мы составляем уравнение. Если же нет, то вместо знака «равно» мы можем указать любое другое соотношение между этими величинами. Два числа или математических объекта могут быть больше «>», меньше «<» или равны «=» относительно друг друга. В этом случае речь идет о строгих неравенствах. Если же в неравных соотношениях присутствует знак равно и числовые элементы больше или равны (a ≥ b) или меньше или равны (a ≤ b), то такие неравенства называются нестрогими.

Знаки неравенств в их современном виде придумал британский математик Томас Гарриот, который в 1631 году выпустил книгу о неравных соотношениях. Знаки больше «>» и меньше «<» представляли собой положенные на бок буквы V, поэтому пришлись по вкусу не только математикам, но и типографам.

Решение неравенств

Неравенства, как и уравнения, бывают разных типов. Линейные, квадратные, логарифмические или показательные неравные соотношения развязываются различными методами. Однако вне зависимости от метода, любое неравенство вначале требуется привести к стандартному виду. Для этого используются тождественные преобразования, идентичные видоизменениям равенств.

Тождественные преобразования неравенств

Такие трансформации выражений очень похожи на привидение уравнений, однако они имеют нюансы, которые важно учитывать при развязывании неравенств.

Первое тождественное преобразование идентично аналогичной операции с равенствами. К обеим сторонам неравного соотношения можно прибавить или отнять одно и то же число или выражение с неизвестным иксом, при этом знак неравенства останется прежним. Чаще всего этот метод применяется в упрощенной форме как перенос членов выражения через знак неравенства со сменой знака числа на противоположный. Имеется в виду смена знака самого члена, то есть +R при переносе через любой знак неравенства изменится на – R и наоборот.

Второе преобразование имеет два пункта:

  1. Обе стороны неравного соотношения разрешается умножить или разделить на одно и то же положительное число. Знак самого неравенства при этом не изменится.
  2. Обе стороны неравенства разрешается разделить или умножить на одно и то же отрицательное число. Знак самого неравенства изменится на противоположный.

Второе тождественное преобразование неравенств имеет серьезные различия с видоизменением уравнений. Во-первых, при умножении/делении на отрицательное число знак неравного выражения всегда изменяется на обратный. Во-вторых, разделить или умножить части отношения разрешается только на число, а не на любое выражение, содержащее неизвестное. Дело в том, что мы не можем точно знать, число больше или меньше нуля скрывается за неизвестным, поэтому второе тождественное преобразование применяется к неравенствам исключительно с числами. Рассмотрим эти правила на примерах.

Примеры развязывания неравенств

В заданиях по алгебре встречаются самые разные задания на тему неравенств. Пусть нам дано выражение:

6x − 3(4x + 1) > 6.

Для начала раскроем скобки и перенесем все неизвестные влево, а все числа – вправо.

6x − 12x > 6 + 3

Нам требуется поделить обе части выражения на −6, поэтому при нахождении неизвестного икса знак неравенства изменится на противоположный.

При решении этого неравенства мы использовали оба тождественных преобразования: перенесли все числа справа от знака и разделили обе стороны соотношения на отрицательное число.

Наша программа представляет собой калькулятор решения числовых неравенств, которые не содержат неизвестных. В программу заложены следующие теоремы для соотношений трех чисел:

  • если A < B то A–C< B–C;
  • если A > B, то A–C > B–C.

Вместо вычитания членов A–C вы можете указать любое арифметическое действие: сложение, умножение или деление. Таким образом, калькулятор автоматически представит неравенства сумм, разностей, произведений или дробей.

Заключение

В реальной жизни неравенства встречаются также часто, как и уравнения. Естественно, что в быту знания о разрешении неравенств могут и не понадобиться. Однако в прикладных науках неравенства и их системы находят широкое применение. К примеру, различные исследования проблем глобальной экономики сводятся к составлению и развязыванию систем линейных или квадратных неравенств, а некоторые неравные отношения служат однозначным способом доказательства существования определенных объектов. Пользуйтесь нашими программами для решения линейных неравенств или проверки собственных выкладок.