Меню
Бесплатно
Главная  /  Истории успеха  /  Типичные химические свойства аренов. Ароматические углеводороды (арены): классификация, номенклатура и изомерия, физические свойства

Типичные химические свойства аренов. Ароматические углеводороды (арены): классификация, номенклатура и изомерия, физические свойства

Общее рассмотрение.

Ароматическими углеводородами (аренами) называются вещества, в молекулах которых содержится одно или несколько бензольных колец - циклических групп атомов углерода с особым характером связей.

Понятие «бензольное кольцо» сразу требует расшифровки. Для этого необходимо хотя бы коротко рассмотреть строение молекулы бензола. Первая структура бензола была предложена в 1865 г. немецким ученым А. Кекуле:

Эта формула правильно отражает равноценность шести атомов углерода, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, бензол не проявляет склонности к реакциям присоединения: он не обесцвечивает бромную воду и раствор перманганата калия, т.е. не дает типичных для непредельных соединений качественных реакций.

Особенности строения и свойств бензола удалось полностью объяснить только после развития современной квантово-механической теории химических связей. По современным представлениям все шесть атомов углерода в молекуле бензола находятся в -гибридном состоянии. Каждый атом углерода образует -связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Валентные углы между тремя -связями равны 120°. Таким образом, все шесть атомов углерода лежат в одной плоскости, образуя правильный шестиугольник (-скелет молекулы бензола).

Каждый атом углерода имеет одну негибридизованную p-орбиталь.

Шесть таких орбиталей располагаются перпендикулярно плоскому -скелету и параллельно друг другу (рис. 21.1, а). Все шесть р-электронов взаимодействуют между собой, образуя -связи, не локализованные в пары, как при образовании обычных двойных связей, а объединенные в единое -электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение (см. § 19). Наибольшая -электронная плотность в этой сопряженной системе располагается над и под плоскостью -скелета (рис. 21.1, б).

Рис. 21.1. Строение молекулы бензола

В результате все связи между атомами углерода в бензоле выравнены и имеют длину 0,139 нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154 нм) и длиной двойной связи в алкенах (0,133 нм). Равноценность связей принято изображать кружком внутри цикла (рис. 21.1, в). Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения - количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола (сравните - энергия сопряжения в бутадиене равна всего 12 кДж/моль).

Такое электронное строение объясняет все особенности бензола. В частности, понятно, почему бензол трудно вступает в реакции присоединения - это привело бы к нарушению сопряжения. Такие реакции возможны только в очень жестких условиях.

Номенклатура и изомерия.

Условно арены можно разделить на два ряда. К первому относят производные бензола (например, толуол или дифенил), ко второму - конденсированные (полиядерные) арены (простейший из них - нафталин):

Мы рассмотрим только гомологический ряд бензола с общей формулой .

Структурная изомерия в гомологическом ряду бензола обусловлена взаимным расположением заместителей в ядре. Монозамещенные производные бензола не имеют изомеров положения, так как все атомы в бензольном ядре равноценны. Дизамещенные производные существуют в виде трех изомеров, различающихся взаимным расположением заместителей. Положение заместителей указывают цифрами или приставками:

Радикалы ароматических углеводородов называют арильными радикалами. Радикал называется фенил.

Физические свойства.

Первые члены гомологического ряда бензола (например, толуол, этилбензол и др.) - бесцветные жидкости со специфическим запахом. Они легче воды и в воде не растворимы. Хорошо растворяются в органических растворителях. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Способы получения.

1. Получение из алифатических углеводородов. При пропускании алканов с неразветвленной цепью, имеющих не менее 6 атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидроциклизация - образование арена с выделением водорода:

2. Дегидрирование циклоалканов. Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной:

3. Получение бензола тримеризацией ацетилена - см. § 20.

4. Получение гомологов бензола по реакции Фриделя-Крафтса - см. ниже.

5. Сплавление солей ароматических кислот со щелочью:

Химические свойства.

Общее рассмотрение. Обладая подвижной шестеркой -электронов, ароматическое ядро является удобным объектом для атаки электрофильными реагентами. Этому способствует также пространственное расположение -электронного облака с двух сторон плоского -скелета молекулы (рис. 21.1, б)

Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом (от англ. substitution electrophilic).

Механизм электрофильного замещения можно представить следующим образом. Электрофильный реагент XY (X является электрофилом) атакует электронное облако, и за счет слабого электростатического взаимодействия образуется неустойчивый -комплекс. Ароматическая система при этом еще не нарушается. Эта стадия протекает быстро. На второй, более медленной стадии формируется ковалентная связь между электрофилом X и одним из атомов углерода кольца за счет двух -электронов кольца. Этот атом углерода переходит из в -гибридное состояние. Ароматичность системы при этом нарушается. Четыре оставшиеся -электрона распределяются между пятью другими атомами углерода, и молекула бензола образует карбокатион, или -комплекс.

Нарушение ароматичности энергетически невыгодно, поэтому структура -комплекса менее устойчива, чем ароматическая структура. Для восстановления ароматичности происходит отщепление протона от атома углерода, связанного с электрофилом (третья стадия). При этом два электрона возвращаются в -систему, и тем самым восстанавливается ароматичность:

Реакции электрофильного замещения широко используются для синтеза многих производных бензола.

Химические свойства бензола.

1. Галогенирование. Бензол не взаимодействует с хлором или бромом в обычных условиях. Реакция может протекать только в присутствии катализаторов - безводных . В результате реакции образуются галогенозамещенные арены:

Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы:

2. Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии так называемой нитрующей смеси (смесь концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко:

3. Сульфирование. Реакция легко проходит под действием «дымящей» серной кислоты (олеума):

4. Алкилирование по Фриделю-Крафтсу. В результате реакции происходит введение в бензольное ядро алкильной группы с получением гомологов бензола. Реакция протекает при действии на бензол галогеналканов в присутствии катализаторов - галогенидов алюминия. Роль катализатора сводится к поляризации молекулы с образованием электрофильной частицы:

В зависимости от строения радикала в галогеналкане можно получить разные гомологи бензола:

5. Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора . Механизм реакции сходен с механизмом предыдущей реакции:

Все рассмотренные выше реакции протекают по механизму электрофильного замещения .

Реакции присоединения к аренам приводят к разрушению ароматической системы и требуют больших затрат энергии, поэтому протекают только в жестких условиях.

6. Гидрирование. Реакция присоединения водорода к аренам идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан, а гомологи бензола - в производные циклогексана:

7. Радикальное галогенирование. Взаимодействие паров бензола с хлором протекает по радикальному механизму только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт - гексахлорциклогексан :

8. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы. Только при сильном нагревании (400 °С) паров бензола с кислородом воздуха в присутствии катализатора получается смесь малеиновой кислоты и ее ангидрида:

Химические свойства гомологов бензола.

Гомологи бензола имеют целый ряд особых химических свойств, связанных со взаимным влиянием алкильного радикала на бензольное кольцо, и наоборот.

Реакции в боковой цепи. По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (а-атома углерода).

Замещение в бензольном кольце возможно только по механизму в присутствии катализатора :

Ниже вы узнаете, какие из трех изомеров хлортолуола образуются в этой реакции.

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:

Правила ориентации (замещения) в бензольном кольце.

Важнейшим фактором, определяющим химические свойства молекулы, является распределение в ней электронной плотности. Характер распределения зависит от взаимного влияния атомов.

В молекулах, имеющих только -связи, взаимное влияние атомов осуществляется через индуктивный эффект (см. § 17). В молекулах, представляющих собой сопряженные системы, проявляется действие мезомерного эффекта.

Влияние заместителей, передающееся по сопряженной системе -связей, называется мезомерным (М) эффектом.

В молекуле бензола -электронное облако распределено равномерно по всем атомам углерода за счет сопряжения.

Если же в бензольное кольцо ввести какой-нибудь заместитель, это равномерное распределение нарушается, и происходит перераспределение электронной плотности в кольце. Место вступления второго заместителя в бензольное кольцо определяется природой уже имеющегося заместителя.

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронов опорные и электроноакцепторные.

Электронодонорные заместители проявляют эффект и повышают электронную плотность в сопряженной системе. К ним относятся гидроксильная группа -ОН и аминогруппа Неподеленная пара электронов в этих группах вступает в общее сопряжение с -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и параположениях:

Алкильные группы не могут участвовать в общем сопряжении, но они проявляют эффект, под действием которого происходит аналогичное перераспределение -электронной плотности.

Электроноакцепторные заместители проявляют -М эффект и снижают электронную плотность в сопряженной системе. К ним относятся нитрогруппа сульфогруппа альдегидная -СНО и карбоксильная -СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, причем меньше всего она уменьшается в метаположениях:

Например, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

Помимо ориентирующего действия, заместители оказывают влияние и на реакционную способность бензольного кольца: ориентанты 1-го рода (кроме галогенов) облегчают вступление второго заместителя; ориентанты 2-г о рода (и галогены) затрудняют его.


Бензол получают из каменноугольной смолы, образующейся при коксовании угля, нефти, синтетическими методами.

1. Получение из алифатических углеводородов . При пропускании алканов с неразветвленной цепью, имеющих не менее шести атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидроциклизация — образование арена с выделением водорода : способ Б.А. Казанского и А.Ф. Платэ

2. Дегидрирование циклоалканов (Н.Д. Зелинский )Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной при 3000 0 .

3. Получение бензола тримеризацией ацетилена над активированным углём при 600 0 (Н.Д. Зелинский )

3НC?СН -- 600?C ?

4. Сплавление солей ароматических кислот со щелочью или натронной известью:

5. Химические свойства аренов.

Бензольное ядро обладает высокой прочностью. Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом S E (от англ. substitution electrophilic).

Химические свойства бензола.

1. Реакции замещения:

Галогенирование . Бензол не взаимодействует с хлором или бромом в обычных условиях. Реакция может протекать только в присутствии катализаторов — безводных АlСl 3 , FeСl 3 , АlВr 3 . В результате реакции образуются галогенозамещенные арены:

Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы:

Нитрование . Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии так называемой нитрующей смеси (смесь концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко:

Сулъфирование . Реакция легко проходит под действием “дымящей” серной кислоты (олеума):

2. Алкилирование по Фриделю—Крафтсу . В результате реакции происходит введение в бензольное ядро алкильной группы с получением гомологов бензола. Реакция протекает при действии на бензол галогеналканов RСl в присутствии катализаторов — галогенидов алюминия. Роль катализатора сводится к поляризации молекулы RСl с образованием электрофильной частицы:

В зависимости от строения радикала в галогеналкане можно получить разные гомологи бензола:

Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора АlСl 3 . Механизм реакции сходен с механизмом предыдущей реакции:

Все рассмотренные выше реакции протекают по механизму электрофильного замещения S E . Реакции присоединения к аренам приводят к разрушению ароматической системы и требуют больших затрат энергии, поэтому протекают только в жестких условиях.


3. Реакции присоединения, идущие с разрывом связей :

Гидрирование . Реакция присоединения водорода к аренам идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан , а гомологи бензола — в производные циклогексана:

Радикальное галогенирование . Взаимодействие паров бензола с хлором протекает по радикальному механизму только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт — гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6:

4. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы. Только при сильном нагревании (400 °С) паров бензола с кислородом воздуха в присутствии катализатора V 2 О 5 получается смесь малеиновой кислоты и ее ангидрида:

5. Бензол горит. (Просмотр опыта) Пламя бензола коптящее из-за высокого содержания углерода в молекуле.

2 C 6 H 6 + 15 O 2 → 12CO 2 + 6H 2 O

6. Применение аренов.

Бензол и его гомологи применяются как химическое сырье для производства лекарств, пластмасс, красителей, ацетона, фенола, формальдегидных пластмасс. ядохимикатов и многих других органических веществ. Широко используются как растворители. Бензол в качестве добавки улучшает качество моторного топлива. Этилен используют для получения этилового спирта, полиэтилена. Он ускоряет созревание плодов (помидоров, цитрусовых) при введении незначительных количеств его в воздух теплиц. Пропилен используется для синтеза глицерина, спирта, для добывания полипропилена, который идет на изготовление веревок, канатов, упаковочного материала. Исходя из 1-бутену, добывают синтетический каучук.

Ацетилен используют для автогенной сварки металлов. Полиэтилен используются как упаковочный материал, для изготовления сумок, игрушек, домашней посуды (бутылок, ведер, мисок и т.п.). Ароматические углеводороды широко применяют в производстве красителей, пластических масс, химико-фармацевтических препаратов, взрывчатых веществ, синтетических волокон, моторного топлива и др. Основным источником получения А. у. служат продукты коксования каменного угля. Из 1 т кам.-уг. смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда. Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу.

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ:

1. Какие соединения называются аренами?

2. Какие характерные физические свойства?

3. Задача. Из 7,8 г бензола получено 8,61 г нитробензола. Определите выход (в%) продукта реакции.

Ароматические углеводороды, называемые еще аренами, представлены органическими веществами. В составе их молекул присутствуют одно или несколько бензольных ядер (колец). Бензол, также называемый бензеном, - первый представитель гомологического ряда аренов. Химические свойства, строение молекулы и типы химических связей в его молекуле имеют ряд особенностей. Мы рассмотрим их в нашей статье, а также познакомимся с другими соединениями, входящими в группу ароматических углеводородов.

Как установили структурную формулу аренов

В 1865 году немецкий ученый Ф. Кекуле предложил пространственную модель простейшего арена - бензола. Она имела вид плоского шестиугольника, в вершинах которого находились атомы углерода, которые соединялись между собой тремя простыми и двойными связями, чередующимися друг с другом. Однако выявленные экспериментальным путем химические свойства аренов не соответствовали предложенной Ф. Кекуле формуле. Например, бензол не обесцвечивал раствор перманганата калия и бромную воду, что указывало на отсутствие в молекулах аренов пи-связей. Каково же строение бензола на самом деле? Ни одинарных, ни двойных связей у ароматических углеводородов нет. Опытным путем установлено, что эти соединения содержат между атомами углерода равноценный тип химической связи, получившей название полуторной, или ароматической. Именно поэтому они не вступают в реакцию окисления с растворами KMnO4 и Br2. Выведена общая формула аренов - CnH2n-6. Все специфические свойства ароматических соединений можно объяснить их электронным строением, которое мы изучим далее.

Электронная формула

На примере бензола установим, как связаны между собой атомы карбона. Выяснилось, что все шесть углеродных атомов находятся в виде sp2-гибридизации. Карбон соединен с атомом водорода и двумя соседними углеродными атомами тремя сигма-связями. Вот благодаря чему формируется плоская шестиугольная форма молекулы. Однако у каждого карбонового атома остается еще по одной отрицательно заряженной частице, не задействованной в гибридизации. Ее электронное облако имеет вид гантели и располагается над и под плоскостью шестиугольника, называемого бензольным кольцом. Далее все шесть гантелей перекрываются и образуют общую ароматическую (полуторную) связь. Именно она и обусловливает все физические и химические характеристики веществ. Таково электронное строение аренов.

Что такое бензол?

Лучше понять особенности ароматических углеводородов поможет знакомство с первым представителем этого класса - бензеном. Легко подвижная, горючая бесцветная жидкость со своеобразным запахом, не растворимая в воде, - это бензол. Как само соединение, так и его пары токсичны. Согласно общей формуле аренов количественный и качественный состав молекулы вещества можно выразить в таком виде: C6H6. Как и для других ароматических углеводородов - толуола, антрацена или нафталина, для бензола типичными будут реакции горения и замещения атомов водорода бензольного ядра. Особенностью жесткого окисления всех ароматических соединений является сильно коптящее пламя. Смесь паров бензола с воздухом взрывоопасна, поэтому все опыты с веществом в лаборатории проводятся только в вытяжном шкафу. Бензол, как и другие ароматические вещества, не присоединяет ни воду, ни галогеноводороды. Он также не обесцвечивает раствор перманганата калия и бромную воду. Гомологи бензола, например толуол или кумол, могут окисляться, в этом случае реакции подвергается не само бензольное кольцо, а только радикал.

Химические свойства аренов

К каким же реакциям способны соединения, содержащие в своем составе бензольные кольца и полуторную связь между атомами углерода? Это, прежде всего, реакции замещения, проходящие у них намного легче, чем у алканов. Представим запись каталитической реакции между бензолом и бромом с участием бромида трехвалентного железа, приводящей к образованию бромбензола - нерастворимой в воде бесцветной жидкости:

C6H6+ Br2→ C6H5Br +HBr

Если в процессе применять хлористый алюминий как катализатор, можно добиться полного замещения в молекуле бензола всех водородных атомов. В этом случае образуется гексахлорбензол, бесцветные кристаллы которого применяют в методах защиты семян культурных растений и в процессах обработки древесины для продления сроков ее хранения. Для более полной характеристики аренов добавим некоторые факты. Чтобы ароматические соединения могли присоединять другие вещества, например хлор, нужны специальные условия. В нашем случае это будет ультрафиолетовое облучение реагирующей смеси. Продуктом реакции будет гексахлорциклогексан, или, как его еще называют, гексахлоран. Это известное в сельском хозяйстве средство - инсектицид, применяемый для борьбы с насекомыми-вредителями.

Как и для чего получают нитробензол?

Продолжим обзор химических свойств аренов. Применяя в одной реакции концентрированные азотную и сульфатную кислоты (нитрующую смесь), можно из бензола получить важный для органического синтеза продукт - нитробензол. Это жидкость бледно-желтого цвета, маслянистая на вид, имеет миндальный запах. Она нерастворима в воде, но часто используется как растворитель для многих органических веществ: лаков, жиров и т.д. Нитробензол является многотоннажным продуктом, так как используется в качестве сырья для получения анилина. Это вещество настолько значимо для химической промышленности, что стоит остановиться на нем более подробно. Известным российским химиком Н.Н. Зининым в 1842 году из нитробензола реакцией восстановления сульфидом аммония был получен анилин. В современных условиях получил распространение контактный метод, при котором смесь паров водорода и нитробензола пропускают при температуре 300 °C над катализатором. Полученный ароматический амин в дальнейшем используют для производства взрывчатых веществ, красителей, лекарственных препаратов.

Из чего добывают ароматические углеводороды?

Наиболее перспективным является получение аренов из продукта коксования каменного угля и в процессе нефтепереработки. Циклопарафины, содержащиеся в каменноугольной смоле, подвергают гидрогенизации над катализатором при температуре до 300 °C, продуктом реакции будет бензол. Дегидрирование алканов также приводит к образованию ароматических углеводородов. Реакцией Зелинского-Казанского бензол получают из этина, пропуская его через трубку с активированным углем, разогретую до 600 °C. Получение аренов, например толуола, осуществляют с помощью реакции Фриделя - Крафтса. Можно также добывать метилбензол (толуол), используя гептан. Полученные виды аренов применяют как растворители и добавки к моторному топливу, в производстве анилиновых красителей и ядохимикатов.

Нафталин

В 50-70-х годах прошлого века одним из излюбленных средств защиты меховых и шерстяных изделий от моли в быту являлся нафталин. При его длительном применении одежда приобретала характерный, очень стойкий запах. Однако более важным является применение нафталина в качестве сырья для синтеза лекарственных средств, красителей, взрывчатых веществ. Основные способы его получения основаны на переработке продуктов нефтеперегонки и отходов этиленового производства - пиролизной смолы. Вещество, в отличие от бензола, содержит два бензольных ядра, поэтому реакции нитрования и галогенирования проходят у него быстрее. Продолжая приводить примеры аренов, остановимся на еще одном, важном для промышленности ароматическом углеводороде - винилбензоле.

Стирол

Современная индустрия строительных материалов невозможна без полимерных материалов: легких в обработке, прочных и износоустойчивых. Полимеры, полученные из винилбензола, например, такие, как пенопласт (вспененный полистирол), пластики САН и АБС, используются в производстве натяжных потолков, напольных покрытий, утеплителей стен. Стирол получают из этилбензола в виде бесцветной, горючей жидкости со своеобразным запахом. В дальнейшем ее подвергают полимеризации и добывают твердую стекловидную массу - полистирол. Он и служит исходным продуктом в производстве вышеназванных строительных материалов. Винилбензол применяют в качестве растворителя, используют наряду с бутадиеном в реакции полимеризации, приводящей к синтезу бутадиен-стирольных каучуков.

Номенклатура ароматических соединений

Название аренов по международной классификации ИЮПАК включает в себя обозначение заместителя, к которому добавляют слово "бензол". Например, C6H5CH3 - метилбензол, C6H5C2H3 - винилбензол. У этих соединений есть и тривиальные названия, так, первое соединение именуют толуолом, второе - стиролом. Арены могут содержать два заместителя, например два метильных радикала. Они способны присоединяться к карбоновому циклу в трех позициях: при 1 и 2 углеродных атомах, тогда говорят об ортоположении заместителей. Если радикалы располагаются при 1 и 3 карбоновых частицах, то речь идет о метаположении заместителей, при 1 и 4 атомах углерода - это паразамещение. Высшие гомологи бензола можно представить как производные насыщенных углеводородов, в молекулах которых один атом водорода замещен фенильным радикалом C6H5-. Например, соединение с формулой C6H5C6H13 будет иметь название "фенилгексан".

В нашей статье мы изучили химические свойства аренов, а также дали характеристику их свойствам и применению в промышленности.

Способы получения. 1. Получение из алифатических углеводородов. Для получения бензола и его гомологов в промышленности используют ароматизацию предельных углеводородов, входящих в состав нефти. При пропускании алканов с неразветвленной цепью, состоящей не менее чем из шести атомов углерода, над нагретой платиной или оксидом хрома происходит дегидрирование с одновременным замыканием цикла (дегидроциклизация ). При этом из гексана получают бензол, а из гептана - толуол.

2. Дегидрирование циклоалканов также приводит к ароматическим углеводородам; для этого пары циклогексана и его гомологов пропускают над нагретой платиной.

3. Бензол можно получить при тримеризации ацетилена, для чего ацетилен пропускают над активированным углем при 600 °С.

4. Гомологи бензола получают из бензола при его взаимодействии с алкилгалогенидами в присутствии галогенидов алюминия (реакция алкилирования, или реакция Фриделя-Крафтса).

5. При сплавлении солей ароматических кислот со щелочью выделяются арены в газообразном виде.

Химические свойства. Ароматическое ядро, обладающее подвижной системой л-электронов, - удобный объект для атаки электрофильными реагентами. Этому способствует также пространственное расположение л-электронного облака с двух сторон плоского a-скелета молекулы (см. рис. 23.1, б).

Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом S E (от англ, substitution, electrophilic).

Механизм S E можно представить следующим образом:

На первой стадии электрофильная частица X притягивается к л-электронному облаку и образует с ним л-комплекс. Затем два из шести л-электронов кольца образуют a-связь между X и одним из атомов углерода. При этом ароматичность системы нарушается, так как в кольце остается только четыре л-электрона, распределенные между пятью атомами углерода (a-комплекс). Для сохранения ароматичности a-комплекс выбрасывает протон, а два электрона связи С-Н переходят в л-электронную систему.

По механизму электрофильного замещения протекают следующие реакции ароматических углеводородов.

1. Галогенирование. Бензол и его гомологи взаимодействуют с хлором или бромом в присутствии катализаторов - безводных А1С1 3 , FeCl 3 , А1Вг 3 .

По этой реакции из толуола получают смесь орто- и пара-изоме- ров (см. ниже). Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы.

2. Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии нитрующей смеси (смеси концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко.

3. Сульфирование . Реакция легко проходит с «дымящей» серной кислотой (олеумом).

  • 4. Алкилирование по Фриделю-Крафтсу - см. выше способы получения гомологов бензола.
  • 5. Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора А1С1 3 . Механизм реакции сходен с механизмом предыдущей реакции.

Все рассмотренные выше реакции протекают по механизму электрофильного замещения S E .

Наряду с реакциями замещения ароматические углеводороды могут вступать в реакции присоединения, однако эти реакции приводят к разрушению ароматической системы и поэтому требуют больших затрат энергии и протекают только в жестких условиях.

6. Гидрирование бензола идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан.

Гомологи бензола при гидрировании дают производные циклогексана.

7. Радикальное галогенирование бензола происходит при взаимодействии его паров с хлором только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт гексахлорциклогек- сан (гексахлоран) С 6 Н 6 С1 6 (атомы водорода в структурных формулах не указаны).

8. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы - реакция требует жестких условий. Например, окисление бензола кислородом воздуха происходит только при сильном нагревании (400 °С) его паров на воздухе в присутствии катализатора V 2 0 5 ; продукты - смесь малеиновой кислоты и ее ангидрида.


Гомологи бензола. Химические свойства гомологов бензола отличны от свойств бензола, что обусловлено взаимным влиянием алкильного радикала и бензольного кольца.

Реакции в боковой цепи. По химическим свойствам алкильные заместители в бензольном кольце подобны алканам. Атомы водорода в них замещаются на галоген по радикальному механизму (S R). Поэтому в отсутствие катализатора при нагревании или УФ облучении идет радикальная реакция замещения в боковой цепи. Однако влияние бензольного кольца на алкильные заместители приводит к тому, что в первую очередь замещается водород у атома углерода, непосредственно связанного с бензольным кольцом (а-атома углерода).

Замещение в бензольном кольце по механизму S E возможно только в присутствии катализатора (А1С1 3 или FeCl 3). Замещение в кольце происходит в орто- и пара-положения к алкильному радикалу.

При действии перманганата калия и других сильных окислителей на гомологи бензола боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением а-атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту.


Физические свойства

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода вих молекулах.

Физические свойства некоторых аренов представлены в таблице.

Таблица. Физические свойства некоторых аренов

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

Бензол

C 6 H 6

5,5

80,1

Толуол (метилбензол)

С 6 Н 5 СH 3

95,0

110,6

Этилбензол

С 6 Н 5 С 2 H 5

95,0

136,2

Ксилол (диметилбензол)

С 6 Н 4 (СH 3) 2

орто-

25,18

144,41

мета-

47,87

139,10

пара-

13,26

138,35

Пропилбензол

С 6 Н 5 (CH 2) 2 CH 3

99,0

159,20

Кумол (изопропилбензол)

C 6 H 5 CH(CH 3) 2

96,0

152,39

Стирол (винилбензол)

С 6 Н 5 CH=СН 2

30,6

145,2

Бензол – легкокипящая ( t кип = 80,1°С), бесцветная жидкость, не растворяется в воде

Внимание! Бензол – яд, действует на почки, изменяет формулу крови (при длительном воздействии), может нарушать структуру хромосом.

Большинство ароматических углеводородов опасны для жизни, токсичны.

Получение аренов (бензола и его гомологов)

В лаборатории

1. Сплавление солей бензойной кислоты с твёрдыми щелочами

C 6 H 5 -COONa + NaOH t → C 6 H 6 + Na 2 CO 3

бензоат натрия

2. Реакция Вюрца-Фиттинга : (здесь Г – галоген)

С 6 H 5 -Г + 2 Na + R -Г → C 6 H 5 - R + 2 Na Г

С 6 H 5 -Cl + 2Na + CH 3 -Cl → C 6 H 5 -CH 3 + 2NaCl

В промышленности

  • выделяют из нефти и угля методом фракционной перегонки, риформингом;
  • из каменноугольной смолы и коксового газа

1. Дегидроциклизацией алканов с числом атомов углерода больше 6:

C 6 H 14 t , kat →C 6 H 6 + 4H 2

2. Тримеризация ацетилена (только для бензола) – р. Зелинского :

3С 2 H 2 600° C , акт. уголь →C 6 H 6

3. Дегидрированием циклогексана и его гомологов:

Советский академик Николай Дмитриевич Зелинский установил, что бензол образуется из циклогексана (дегидрирование циклоалканов

C 6 H 12 t, kat →C 6 H 6 + 3H 2

C 6 H 11 -CH 3 t , kat →C 6 H 5 -CH 3 + 3H 2

метилциклогексантолуол

4. Алкилирование бензола (получение гомологов бензола) – р Фриделя-Крафтса .

C 6 H 6 + C 2 H 5 -Cl t, AlCl3 →C 6 H 5 -C 2 H 5 + HCl

хлорэтан этилбензол


Химические свойства аренов

I . РЕАКЦИИ ОКИСЛЕНИЯ

1. Горение (коптящее пламя):

2C 6 H 6 + 15O 2 t →12CO 2 + 6H 2 O + Q

2. Бензол при обычных условиях не обесцвечивает бромную воду и водный раствор марганцовки

3. Гомологи бензола окисляются перманганатом калия (обесцвечивают марганцовку):

А) в кислой среде до бензойной кислоты

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением a -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:


Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

5C 6 H 5 -C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 +28H 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 COOH + 3K 2 SO 4 + 6MnSO 4 +14H 2 O

Упрощённо:

C 6 H 5 -CH 3 + 3O KMnO4 →C 6 H 5 COOH + H 2 O

Б) в нейтральной и слабощелочной до солей бензойной кислоты

C 6 H 5 -CH 3 + 2KMnO 4 → C 6 H 5 COO К + K ОН + 2MnO 2 + H 2 O

II . РЕАКЦИИ ПРИСОЕДИНЕНИЯ (труднее, чем у алкенов)

1. Галогенирование

C 6 H 6 +3Cl 2 h ν → C 6 H 6 Cl 6 (гексахлорциклогексан - гексахлоран)

2. Гидрирование

C 6 H 6 + 3H 2 t , Pt или Ni →C 6 H 12 (циклогексан)

3. Полимеризация

III . РЕАКЦИИ ЗАМЕЩЕНИЯ – ионный механизм(легче, чем у алканов)

б) гомологов бензола при облучении или нагревании

По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ-облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (a -атома углерода).

1) C 6 H 5 -CH 3 + Cl 2 h ν → C 6 H 5 -CH 2 -Cl + HCl

в) гомологов бензола в присутствии катализатора

C 6 H 5 -CH 3 + Cl 2 AlCl 3 → (смесь орта, пара производных) +HCl

2. Нитрование (с азотной кислотой)

C 6 H 6 + HO-NO 2 t, H2SO4 →C 6 H 5 -NO 2 + H 2 O

нитробензол - запах миндаля !

C 6 H 5 -CH 3 + 3HO-NO 2 t, H2SO4 С H 3 -C 6 H 2 (NO 2) 3 + 3H 2 O

2,4,6-тринитротолуол (тол, тротил)

Применение бензола и его гомологов

Бензол C 6 H 6 – хороший растворитель. Бензол в качестве добавки улучшает качество моторного топлива. Служит сырьем для получения многих ароматических органических соединений – нитробензола C 6 H 5 NO 2 (растворитель, из него получают анилин), хлорбензола C 6 H 5 Cl, фенола C 6 H 5 OH, стирола и т.д.

Толуол C 6 H 5 –CH 3 – растворитель, используется при производстве красителей, лекарственных и взрывчатых веществ (тротил (тол), или 2,4,6-тринитротолуол ТНТ).

Ксилолы C 6 H 4 (CH 3) 2 . Технический ксилол – смесь трех изомеров (орто -, мета - и пара -ксилолов) – применяется в качестве растворителя и исходного продукта для синтеза многих органических соединений.

Изопропилбензол C 6 H 5 –CH(CH 3) 2 служит для получения фенола и ацетона.

Хлорпроизводные бензола используют для защиты растений. Так, продукт замещения в бензоле атомов Н атомами хлора – гексахлорбензол С 6 Сl 6 – фунгицид; его применяют для сухого протравливания семян пшеницы и ржи против твердой головни. Продукт присоединения хлора к бензолу – гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6 – инсектицид; его используют для борьбы с вредными насекомыми. Упомянутые вещества относятся к пестицидам – химическим средствам борьбы с микроорганизмами, растениями и животными.

Стирол C 6 H 5 – CH = CH 2 очень легко полимеризуется, образуя полистирол, а сополимеризуясь с бутадиеном – бутадиенстирольные каучуки.

ВИДЕО-ОПЫТЫ