Меню
Бесплатно
Главная  /  Саморазвитие  /  Понятие о поверхностной энергии и поверхностном натяжении. Фундаментальные исследования Энергия поверхностного натяжения слоя жидкости прямо пропорциональна

Понятие о поверхностной энергии и поверхностном натяжении. Фундаментальные исследования Энергия поверхностного натяжения слоя жидкости прямо пропорциональна

1

Рассмотрен вопрос прогнозирования и формирования коэффициента трения в подвижных разъемных соединениях. В качестве инструмента для управления значением требуемого коэффициента трения предложена энергия, «накаченная» в поверхностный слой сопрягаемых поверхностей. Насыщение энергией поверхностного слоя происходит во время реализации технологического процесса изготовления конкретной детали на всех стадиях производства, от создания заготовки до операции финишной обработки. Предположено, что для получения наименьшего значения величины коэффициента трения сопрягаемых поверхностей необходима минимальная разность их энергий поверхностного слоя. Управление трением методами технологического воздействия позволит приблизиться к решению проблемы плавности перемещения контактирующих поверхностей и точности позиционирования. Предложенный подход позволит совершенствовать современные конструкции изделий и избежать значительных экономических издержек.

энергия поверхностного слоя

коэффициент трения

технологическое воздействие

1. Крагальский И.В., Михин Н.М. Узлы трения машин: Справочник. – М.: Машиностроение, 1984. – 280 с., ил.

2. Мусохранов М.В., Антонюк Ф.И., Калмыков В.В. Поверхностная энергия и процесс схватывания контактирующих поверхностей // Наука и образование: Электронное научно-техническое издание. 2014. – № 11. URL: http://technomag.bmstu.ru/doc/737377.html (дата обращения: 12.01.2015).

3. Мусохранов М.В., Антонюк Ф.И., Калмыков В.В. Определение значения поверхностной энергии через работу выхода электрона // Современные проблемы науки и образования: Электронный научный журнал. 2014. – № 6. URL: http://www.science-education.ru/120-16036 (дата обращения: 15.01.2015).

4. Мусохранов М.В. Технологическое обеспечение качества поверхностного слоя направляющих элементов машиностроения: дисс. канд. техн. наук – M. 2006. – С. 65.

5. Суслов А.Г. Качество поверхностного слоя деталей машин. – М.: Машиностроение, 2000. – 320 с.

6. Суслов А.Г., Дальский А.М. Научные основы технологии машиностроения. – М.: Машиностроение, 2002. – 684 с.

Наличие в справочной литературе нормированных данных для различных случаев компоновки сопрягаемых деталей, казалось бы, полностью решает проблему их эксплуатации. Вместе с этим становится очевидным, что в этом случае при конструировании поверхностей деталей машин как трущихся, так и составляющих неподвижные пары сопрягаемых деталей, характеризуются весьма приближенно. Эффект последствия при технологическом воздействии, а также многие природные свойства кинематических пар не учитываются вовсе. Энергетика поверхностных слоев в лучшем случае лишь констатируется, но не используется на практике. В результате возможны случаи ошибок конструирования и, как следствие, определенные экономические издержки. Определение таких издержек требует особых расчетов применительно к отдельным парам деталей и машинам в целом.

Влияние энергии поверхностного слоя на коэффициент трения

В подавляющем количестве случаев для функционирования пар трения стараются создать конструкции с относительно малым коэффициентом трения . Это, как правило, приводит к некоторому совершенствованию конструкций. В других случаях необходим относительно высокий коэффициент трения, который может быть назван как коэффициент сцепления со значением более единицы, и тогда направляющий элемент играет особую роль определения положения детали в пространстве . Таким образом, конструкция становится более совершенной.

Ситуация с использованием коэффициента трения в самом общем виде условно представлена на рис. 1. Чаще всего используют коэффициент f1, взятый из справочной литературы. Вместе с этим фактический коэффициент трения может оказаться равным f1′, поскольку непременно проявится влияние микрогеометрии и энергии поверхностного слоя. В другом случае по тем же самым причинам коэффициент трения может оказаться равным f1″. Но конструктор уверен, что в его случае действует коэффициент f1.

Определение действительных значений коэффициентов трения, а также обеспечение их величины технологическими методами до требуемых, является приоритетной задачей современной технологии машино- и приборостроения .

Рис. 1. Условное представление использования коэффициентов трения. Типичным является случай, когда коэффициенты колеблются в интервале Δ: Δ= f1″ - f1′

Для кинематических пар машин актуальным является постоянное снижение коэффициентов трения на практике. Необходимость этого определяется следующими обстоятельствами:

Снижение коэффициентов неизменно приводит к экономическим выгодам, благотворно влияя в свою очередь на значения коэффициентов полезного действия изделий;

Числовое определение экономических выгод не вызывает трудностей. Это особенно отчетливо было отмечено в период создания подшипниковой промышленности, когда трение скольжения было заменено на трение качения;

Проблема плавности перемещения контактирующих деталей. Сам характер профиля трущихся поверхностей уже предопределяет наличие так называемых прерывистых колебаний элементов в их относительном перемещении. Всякое перемещение всегда неравномерно, скачкообразно. Снижение значений коэффициентов трения неизменно увеличит равномерность перемещения;

Требования к точности позиционирования. В частности, это относится к целому направлению в электровакуумном машиностроении. При этом огромный интерес представляют исследования, посвященные коэффициентам трения как в обычной атмосфере, так и в вакууме. Точность позиционирования является одним из важнейших показателей качества машин с программным управлением, используемых не только в машиностроении.

Синергетический подход к соударению двух микровыступов контактирующих поверхностей требует особого рассмотрения. Однако и здесь, рассматривая собственное соударение как бифуркацию, можно использовать коэффициент трения как своеобразный инструмент для формирования постбифуркационного самоорганизующегося пространства. Такой процесс может быть распространен на всю поверхность контактирующих деталей .

Традиционно контакт рассматривается как результат зацепления и деформации взаимно внедряющихся шероховатостей (микронеровностей) двух сопряженных поверхностей. Согласно этой гипотезе, коэффициент трения будет тем меньше, чем меньше шероховатость, т. е. чем тщательнее обработаны трущиеся поверхности .

Указанная точка зрения очень хорошо укладывается в сознании конструкторов и технологов. Однако, в свете рассмотрения вопроса контактирования деталей необходимо ориентироваться на схему на рис. 2 . При относительном перемещении деталей Дг и наличии силы Q возникают упругопластические состояния в местах микроконтактов шероховатостей. Деформирование микроповерхностей происходит практически всегда, несмотря на то, что углы β (по схеме рис. 2.) малы и не превосходят практически 35…40° в зависимости от метода обработки. Одна пара сопряженных микровыступов очень условно показана в деформированном виде.

Рис. 2. Схема взаимодействия микронеровностей контактирующих деталей

Проявление энергетического поля показано условно стрелками так, что каждая сопряженная деталь передает другой детали соответствующую порцию энергии. В свою очередь и другая деталь, также обладающая энергетическим потенциалом, передает энергию первой детали. Взаимная передача энергий схематически показана сплошными и пунктирными стрелками. Очевидно, что как деформирование микровыступов, так и передача энергии происходят всегда, даже тогда, когда между соприкасающимися поверхностями имеется малый зазор. Опыт показывает, что при весьма гладких, «чисто» отполированных поверхностях силы трения не только не уменьшаются, но значительно увеличиваются. В качестве примера может служить эффект залипания при соединении концевых мер длины.

Предполагаемую зависимость энергетического состояния и коэффициента трения можно показать на примере, когда исследовался момент заедания двух трущихся поверхностей одинаковой шероховатости Ra = 0,08 мкм, значение которой получено разными технологическими операциями . На рис. 3. первый столбик диаграммы иллюстрирует, что при шлифовании двух контактирующих поверхностей периферией круга вдоль предполагаемого движения сила Q, при которой происходит момент заедания равна, 1,8 МПа. Второй столбик диаграммы иллюстрирует момент заедания при контакте шлифованной поверхности и поверхности, обработанной шабрением. Третий - двух шаброванных поверхностей. Четвертый - шлифованной поверхности и поверхности, обработанной притиранием. Пятый - двух притертых поверхностей. Шестой - притертой и шаброванной. V - направление скорости перемещения. Из диаграммы видно, что Q изменяется более чем в 3 раза. Ее изменение обусловлено разными значениями коэффициента трения. Так как шероховатость всех поверхностей идентична, то они, по-видимому, имеют разный уровень энергии, которую получили от технологического воздействия.

Рис. 3. Влияние метода обработки на момент заедания

Таким образом, исходя из всего вышесказанного, контакт необходимо рассматривать не только как результат зацепления микровыступов, но и с учетом сил энергетического взаимодействия, проявляющихся при взаимодействии двух поверхностей. Для весьма малых зазоров и расстояний между деталями несколько молекул поверхности сопрягаемых деталей более интенсивно обмениваются накопленной энергией, изменяя тем самым характер взаимодействия - коэффициент трения. Эта гипотеза, вероятно, может более полно объяснить природу и причину возникновения трения, происходящего в результате взаимодействия тщательно обработанных поверхностных слоев деталей машиностроения.

Появление различных математических зависимостей имеет то положительное значение, что позволяет связать воедино параметры физики твердого тела, вопреки как конструированию, так и технологии. Вместе с этим очевидно, что использование непосредственно на практике представленных научных данных оказывается затруднительным из-за отсутствия числовых значений в распоряжении предприятий . Необходимо продолжение начатой работы, а также создание методики определения энергетических составляющих коэффициентов трения, прежде всего для прецизионного машиностроения.

Большой научный интерес вызывает процесс передачи энергии, зависящей от зазора между микровыступами и пластического деформирования, приводящих к интенсивному обмену энергии в зонах контактирования сопрягаемых деталей. В наибольшей степени это обычно происходит на поверхностях, параметры шероховатостей которых 0,1 < Ra < 2,5 мкм, а радиусы кривизны микронеровностей 30-670 мкм, толщина деформированного слоя 17-58 мкм. И вероятно, обмен энергией идет по принципу перетекания ее из «объемов» с большим количеством - в меньшие.

Заключение

Следовательно, для создания наименьшего коэффициента трения необходимо, как это следует из сказанного выше, чтобы разность значений энергий трущейся пары была бы минимальной. Наилучшим является вариант, когда энергии частей одинаковы, а разность равна нулю.

Рецензенты:

Астахов М.В., д.т.н., профессор, заведующий кафедрой «Прикладная механика», Калужский филиал ФГБОУ ВПО «Московский государственный технический университет им. Н.Э. Баумана», г. Калуга;

Шаталов В.К., д.т.н., профессор, заведующий кафедрой «Технологии обработки материалов», Калужский филиал ФГБОУ ВПО «Московский государственный технический университет им. Н.Э. Баумана», г. Калуга.

Работа поступила в редакцию 12.02.2015.

Библиографическая ссылка

Мусохранов М.В., Калмыков В.В., Малышев Е.Н., Зенкин Н.В. ЭНЕРГИЯ ПОВЕРХНОСТНОГО СЛОЯ МЕТАЛЛОВ КАК ИНСТРУМЕНТ ВОЗДЕЙСТВИЯ НА ВЕЛИЧИНУ КОЭФФИЦИЕНТА ТРЕНИЯ // Фундаментальные исследования. – 2015. – № 2-2. – С. 251-254;
URL: http://fundamental-research.ru/ru/article/view?id=36797 (дата обращения: 14.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Когда вода из опрокинутого стакана разливается по полу или когда мы выдуваем мыльный пузырь, поверхность жидкости увеличивается. При этом возникают новые участки разреженного поверхностного слоя. Среднее расстояние между молекулами при их переходе из глубины жидкости на ее поверхность возрастает. Силы притяжения между молекулами жидкости совершают при этом отрицательную работу. В соответствии с законами механики это означает увеличение потенциальной энергии молекул, перешедших из глубины жидкости на поверхность.

Молекулы поверхностного слоя жидкости обладают избытком потенциальной энергии по сравнению с энергией, которой эти молекулы обладали бы, находясь внутри жидкости.

Избыточную потенциальную энергию, которой обладают молекулы на поверхности жидкости, называют поверхностной энергией.

С макроскопической (термодинамической) точки зрения поверхностная энергия - это один из видов внутренней энергии, отсутствующая у газов, но имеющаяся у жидкостей*.

* Поверхностной энергией обладают также твердые тела. Ведь особые условия, в которых находятся молекулы на поверхности жидкости, характерны и для поверхности твердых тел.

При растекании воды из опрокинутого стакана по полу увеличение энергии молекул поверхностного слоя происходит за счет работы силы тяжести. А при выдувании мыльного пузыря увеличение потенциальной энергии молекул поверхностного слоя происходит за счет работы сил давления воздуха в пузыре. Ведь для того чтобы пузырь раздувался, давление воздуха в нем должно быть больше атмосферного.

Поверхностное натяжение

Молекулы на всех участках поверхностного слоя жидкости находятся в одинаковых условиях, и два участка одинаковой площади обладают одинаковой поверхностной энергией. Это означает, что поверхностная энергия прямо пропорциональна площади поверхности жидкости. Поэтому отношение поверхностной энергии U n участка поверхности жидкости к площади S этого участка есть величина постоянная, не зависящая от площади S . Эту величину называют коэффициентом поверхностного натяжения или просто поверхностным натяжением и обозначают буквой σ:

Поверхностное натяжение представляет собой удельную поверхностную энергию, т. е. энергию, приходящуюся на поверхность единичной площади.

В СИ поверхностное натяжение выражается в джоулях на квадратный метр (Дж/м 2). Так как 1 Дж = 1 Н · м, то поверхностное натяжение можно выражать ив ньютонах на метр (Н/м).

Поверхностное натяжение а зависит от природы граничащих сред и от температуры. По мере повышения температуры различие между жидкостью и ее насыщенным паром постепенно стирается и при критической температуре исчезает совсем. Соответственно поверхностное натяжение для границы жидкость - насыщенный пар с повышением температуры уменьшается и при критической температуре становится равным нулю.

Из формулы (7.3.1) следует, что

(7.3.2)

Следовательно, при уменьшении площади поверхности поверхностная энергия уменьшается. Молекулярные силы совершают при этом положительную работу, так как расстояния между молекулами при переходе их из поверхностного слоя в глубь жидкости уменьшаются. В состоянии равновесия жидкости поверхностная энергия имеет минимальное значение. Это соответствует минимальной при заданном объеме площади поверхности. Поэтому, как говорилось в § 7.1, жидкость принимает форму шара, если нет других сил, искажающих ее естественную сферическую форму.

В поверхностном слое жидкости запасена энергия, прямо пропорциональная площади поверхности. Поверхностная энергия - одна из форм внутренней энергии.

Поверхностное натяжение жидкости.

Поверхностный слой жидкости.

Все жидкости и твёрдые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твёрдым телом.


Свойства вещества в этой межфазовой поверхности , толщиной в несколько поперечников атомов или молекул, отличаются от свойств внутри объёма фазы .


Внутри объёма чистого вещества в твёрдом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами.


В пограничном слое молекулы находятся во взаимодействии или с другим числом молекул (другим в сравнении с взаимодействием внутри объёма вещества). Это происходит, например, на границе жидкости с их паром.


Среднее значение равнодействующей молекулярных сил притяжения, приложенных к молекуле, которая находится внутри жидкости, близко к нулю. На рисунке ниже эта молекула обозначена М1 .


Случайные флуктуации этой равнодействующей заставляют молекулу М1 совершать лишь хаотическое движение внутри жидкости.

Иначе обстоит дело с молекулами, находящимися в поверхностном слое жидкости .


Рассмотрим молекулу, находящуюся непосредственно на границе раздела фаз . На рисунке обозначим её М2 .


Если вокруг молекулы М2 описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с нашей молекулой. Радиус такой сферы составляет примерно 10 -9 м .


Для молекулы М2 в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость, а сверху – пар или воздух.


Поэтому для молекулы М2 равнодействующая молекулярных сил притяжения в нижней полусфере много больше равнодействующей молекулярных сил в верхней полусфере. Силы, действующие в верхней полусфере так малы, что ими можно пренебречь.


Если рассмотреть ещё одну молекулу, которая, в сравнении с М2 будет немного больше «утоплена» в жидкость, но также находится в поверхностном слое. Обозначим её М3 .


Поскольку в верней полусфере М3 будут находиться другие молекулы жидкости, то они будут притягивать М3 к себе и частично уравновешивать силы притяжение молекул, находящихся в нижней полусфере М3 .


В результате общая равнодействующая сил, действующих на М3 окажется меньше общей равнодействующей М2 .


Обе равнодействующие будут направлены внутрь жидкости перепендикулярно к её поверхности.


Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия, втягиваются внутрь жидкости .


Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создаёт давление на жидкость, которое называют молекулярным давлением .

Энергия поверхностного слоя жидкости.

Поскольку молекулы жидкости, находящиеся в её поверхностном слое, втягиваются внутрь жидкости, их потенциальная энергия больше, чем у молекул внутри жидкости .


Эту дополнительную потенциальную энергию молекул поверхностного слоя жидкости называют свободной энергией . За счёт неё может быть произведена работа, связанная с уменьшением свободной поверхности жидкости.


И, наоборот, для того, чтобы вывести молекулы, находящиеся внутри жидкости, на её поверхность, нужно преодолеть противодействие молекулярных сил, т.е. произвести работу, которая нужна для увеличения свободной энергии поверхностного слоя жидкости.


При этом, изменение свободной энергии прямо пропорционально изменению площади поверхности жидкости.


Так как всякая система самопроизвольно переходит в состояние, при котором её потенциальная энергия минимальна, то жидкость должна самопроизвольно переходить в такое состояние, при котором площадь её свободной поверхности имеет наименьшую величину .


Например, капля дождя или тумана в воздухе приобретают форму шара, форму, соответствующую наименьшему уровню свободной энергии.

Коэффициент поверхностного натяжения

Коэффициент поверхностного натяжения – это величина, характеризующая зависимость работы молекулярных сил, идущих на изменение площади свободной поверхности жидкости и самой площади изменения этой поверхности.


σ = А/ΔS


σ - коэффициент поверхностного натяжения

А – работа молекулярных сил по изменению площади поверхности жидкости

ΔS - изменение площади поверхности жидкости


σ измеряется работой молекулярных сил при уменьшении площади свободной поверхности жидкости на единицу.


Коэффициент поверхностного натяжения зависит от рода жидкости и внешних условий, например, температуры.


Молекула М1 , которая расположена на поверхности жидкости, взаимодействует не только с молекулами, находящимися внутри жидкости, но и с молекулами на поверхности жидкости, расположенными в пределах сферы молекулярного действия.


Для молекулы М1 равнодействующая R молекулярных сил, направленных вдоль поверхности жидкости, равна нулю, а для молекулы М2 , расположенной у края поверхности, R отлична от нуля.


Из рисунка видно, что сила R направлена перпендикулярно к границе свободной поверхности и по касательной к самой поверхности.


Молекулярные силы, направленные вдоль поверхности жидкости, действуют на любую замкнутую линию на свободной поверхности жидкости по нормали к этой линии таким образом, что стремятся сократить площадь поверхности жидкости, ограниченную замкнутой линией.


Это можно показать на следующем опыте.


На проволочном кольце укрепляется нитка длиной L .



Если затянуть кольцо мыльной плёнкой, то нитка свободно расположится на этой плёнке (Рис. А). Площадь поверхности мыльной плёнки будет определяться контуром рамки.


Если прорвать мыльную плёнку с нижней стороны нитки, то молекулярные силы сократят поверхность, огрниченную теперь верхней частью контура и ниткой. При этом нитка натянется (Рис. В).


Сила, обусловленная взаимодействием молекул жидкости, вызывающая сокращение площади её свободной поверхности и направленная по касательной к этой поверхности, называется силой поверхностного натяжения .


Силы молекулярного давления втягивают молекулы с поверхности внутрь жидкости, а сокращают площадь свободной поверхности, т.е. закрывают образовавшиеся «окна» на этой поверхности.


Итак, поверхностный слой жидкости всегда находится в состоянии натяжения. Однако, это состояние нельзя сравнивать с натяжением упругой растянутой плёнки. Упругие силы возрастают по мере увеличения площади растянутой плёнки, а силы поверхностного натяжения от площади поверхности жидкости не зависят.


Опыт показывает, что на на коэффициент поверхностного натяжения влияет среда и температура жидкости. При повышении температуры жидкости её поверхностное натяжение уменьшается и при критической температуре становится равной нулю.

Лекция 11.Характеристика жидкого состояния вещества. Поверхностный слой жидкости. Энергия поверхностного слоя. Явления на границе жидкости с твердым телом. Капиллярные явления.

ХАРАКТЕРИСТИКА ЖИДКОГО СОСТОЯНИЯ ВЕЩЕСТВА

Жидкость - это агрегатное состояние вещества, промежуточное между газообразным и твердым.

Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения.

Если вокруг молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с нашей молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10 -12 -10 -10 с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между перескоками совершают колебательное движение около временного положения равновесия.

Время между двумя перескоками молекулы из одного положения в другое называется временем оседлой жизни.

Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.

Итак, в небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным).

СВОЙСТВА ЖИДКОСТИ

1.Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о по­верхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде.

2. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.

3. При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость. Прочность жидкости нд разрыв хотя и меньше, чем у твердых веществ, но мало уступает им по величине. Для воды она составляет 2,5-10 7 Н/м 2 .

4.Сжимаемость жидкости тоже очень мала, хотя она и больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.

Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при вращении гребных винтов в воде, при распространении в жидкости ультразвуковых волн. Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т. е. исчезают. Это явление называют кавитацией (от греческого «кавитас» – полость). Оно служит причиной быстрого износа гребных винтов.


ПОВЕРХНОСТНЫЙ СЛОЙ ЖИДКОСТИ

Среднее значение равнодействующей молекулярных сил притя­жения, приложенных к молекуле, которая находится внутри жидкости (рис. 2), близко к нулю. Случайные флуктуации этой равнодействующей заставляют молекулу совершать лишь хаотическое движение внутри жидкости. Несколько иначе обстоит дело с молекулами, находящимися в поверхностном слое жидкости.

Опишем вокруг молекул сферы молекулярного действия радиусом R(порядка 10 -8 м). Тогда для верхней молекулы в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость, а сверху – пар и воздух. Поэтому для верхней молекулы равнодействующая молекулярных сил притяжения в нижней полусфере много больше равнодействующей молекулярных сил в верхней полусфере.

Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость, которое называют молекулярным давлением.

Силы, действующие в горизонтальной плоскости, стягивают поверхность жидкости. Они называются силами поверхностного натяжения

Поверхностное натяжение - физическая величина, равная отношению силы F поверхностного натяжения, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине l этой границы:


Единица поверхностного натяжения – ньютон на метр (Н/м).

Поверхностное натяжение различно для разных жидкостей и зависит от температуры.

Обычно поверхностное натяжение уменьшается с возрастанием температуры и при критической температуре, когда плотность жидкости и пара одинаковы, поверхностное натяжение жидкости равно нулю.

Вещества, которые уменьшают поверхностное натяжение, называют поврхностно – активными (спирт, мыло, стиральный порошок)

Чтобы увеличить площадь поверхности жидкости требуется выполнить работу против поверхностного натяжения.

Имеется другое определение коэффициента поверхностного натяжения - энергетическое. Оно исходит из того, что если площадь поверхности жидкости увеличивается, то некоторое количество молекул из ее объема поднимается на слой поверхности. С этой целью внешние силы совершают работу против молекулярных сил сцепления молекул. Величина данной работы будет пропорциональна изменению площади поверхности жидкости:

Коэффициент пропорциональности σ и называется поверхностным натяжением жидкости.

Выведем единицу поверхностного, натяжения а в СИ: о=1 Дж/1 м 2 = 1 Дж/м 2 .

Молекулы в жидкости обладают кинетической энергией теплового движения и потенциальной энергией межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости к поверхности надо совершить работу по преодолению силы молекулярного давления. Эта работа совершается молекулой за счет запаса кинетической энергии и идет на увеличение ее потенциальной энергии. Поэтому молекулы поверхностного слоя обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эта дополнительная потенциальная энергия, которой обладают молекулы поверхностного слоя, называется поверхностной энергией .

Если поверхность жидкости растянуть, то на поверхность будут выходить все новые молекулы, и потенциальная энергия поверхностного слоя будет увеличиваться. Следовательно, поверхностная энергия пропорциональна площади самой поверхности жидкости (рис.4).

где А – работа силы поверхностного натяжения; F – сила поверхностного натяжения; Dx – растяжение пленки; DS – изменение площади поверхности пленки.

Из этого выражения можно дать еще одно определение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения равен свободной поверхностной энергии, приходящейся на единицу площади поверхности. В этом случае единица измерения [a]=[Дж/м 2 ].

Большое влияние на поверхностное натяжение оказывают находящиеся в жидкости примеси. Например, мыло, растворенное в воде, уменьшает коэффициент поверхностного натяжения до 0,045 Н/м, а сахар или соль повышают. Изменяющие поверхностное натяжение вещества называют поверхностно – активными . К ним можно отнести нефть, мыло, спирт.. Это явление объясняется межмолекулярным взаимодействием между молекулами. Если взаимодействие между молекулами самой жидкости больше, чем между молекулами жидкости и примеси, то молекулы примеси выталкиваются на поверхность и концентрация примеси на поверхности оказывается больше; чем в объеме, что и приводит к уменьшению поверхностного натяжения.

Поверхностно–активные вещества широко применяют при резке металлов, бурении горных пород, и т.д., так как разрушение горных пород в их присутствии происходит легче, адсорбируясь на поверхности твердого тела, они проникают внутрь микротрещин и способствуют дальнейшему развитию этих трещин вглубь.