Меню
Бесплатно
Главная  /  Саморазвитие  /  Пример линейно зависимой системы векторов. Линейная зависимость и линейная независимость векторов

Пример линейно зависимой системы векторов. Линейная зависимость и линейная независимость векторов

Пусть L – линейное пространство над полем Р . Пусть А1, а2, … , аn (*) конечная система векторов из L . Вектор В = a1×А1 + a2×А2 + … + an×Аn (16) называется Линейной комбинацией векторов ( *), или говорят, что вектор В линейно выражается через систему векторов (*).

Определение 14. Система векторов (*) называется Линейно зависимой , тогда и только тогда, когда существует такой ненулевой набор коэффициентов a1, a2, … , an, что a1×А1 + a2×А2 + … + an×Аn = 0. Если же a1×А1 + a2×А2 + … + an×Аn = 0 Û a1 = a2 = … = an = 0, то система (*) называется Линейно независимой.

Свойства линейной зависимости и независимости.

10. Если система векторов содержит нулевой вектор, то она линейно зависима.

Действительно, если в системе (*) вектор А1 = 0, То 1×0 + 0×А2 + … + 0 ×Аn = 0 .

20. Если система векторов содержит два пропорциональных вектора, то она линейно зависима.

Пусть А1 = L ×а2. Тогда 1×А1 –l×А2 + 0×А3 + … + 0×А N = 0.

30. Конечная система векторов (*) при n ³ 2 линейно зависима тогда и только тогда, когда хотя бы один из её векторов является линейной комбинацией остальных векторов этой системы.

Þ Пусть (*) линейно зависима. Тогда найдётся ненулевой набор коэффициентов a1, a2, … , an, при котором a1×А1 + a2×А2 + … + an×Аn = 0 . Не нарушая общности, можно считать, что a1 ¹ 0. Тогда существует и А1 = ×a2×А2 + … + ×an×А N. Итак, вектор А1 является линейной комбинацией остальных векторов.

Ü Пусть один из векторов (*) является линейной комбинацией остальных. Можно считать, что это первый вектор, т. е. А1 = B2А2 + … + bnА N, Отсюда (–1)×А1 + b2А2 + … + bnА N = 0 , т. е. (*) линейно зависима.

Замечание. Используя последнее свойство, можно дать определение линейной зависимости и независимости бесконечной системы векторов.

Определение 15. Система векторов А1, а2, … , аn , … (**) называется Линейно зависимой, Если хотя бы один её вектор является линейной комбинацией некоторого конечного числа остальных векторов. В противном случае система (**) называется Линейно независимой.

40. Конечная система векторов линейно независима тогда и только тогда, когда ни один из её векторов нельзя линейно выразить через остальные её векторы.

50. Если система векторов линейно независима, то любая её подсистема тоже линейно независима.

60. Если некоторая подсистема данной системы векторов линейно зависима, то и вся система тоже линейно зависима.

Пусть даны две системы векторов А1, а2, … , аn , … (16) и В1, в2, … , вs, … (17). Если каждый вектор системы (16) можно представить в виде линейной комбинации конечного числа векторов системы (17), то говорят, что система (17) линейно выражается через систему (16).

Определение 16. Две системы векторов называются Эквивалентными , если каждая из них линейно выражается через другую.

Теорема 9 (основная теорема о линейной зависимости).

Пусть и – две конечные системы векторов из L . Если первая система линейно независима и линейно выражается через вторую, то N £ s.

Доказательство. Предположим, что N > S. По условию теоремы

(21)

Так как система линейно независима, то равенство (18) Û Х1=х2=…=х N= 0. Подставим сюда выражения векторов : …+=0 (19). Отсюда (20). Условия (18), (19) и (20), очевидно, эквивалентны. Но (18) выполняется только при Х1=х2=…=х N= 0. Найдём, когда верно равенство (20). Если все его коэффициенты равны нулю, то оно, очевидно, верно. Приравняв их нулю, получим систему (21). Так как эта система имеет нулевое , то она

совместна. Так как число уравнений больше числа неизвестных, то система имеет бесконечно много решений. Следовательно, у неё есть ненулевое Х10, х20, …, х N0 . При этих значениях равенство (18) будет верно, что противоречит тому, что система векторов линейно независима. Итак, наше предположение не верно. Следовательно, N £ s.

Следствие. Если две эквивалентные системы векторов конечны и линейно независимы, то они содержат одинаковое число векторов.

Определение 17. Система векторов называется Максимальной линейно независимой системой векторов Линейного пространства L , если она линейно независима, но при добавлении к ней любого вектора из L , не входящего в эту систему, она становится уже линейно зависимой.

Теорема 10. Любые две конечные максимальные линейно независимые системы векторов из L Содержат одинаковое число векторов.

Доказательство следует из того, что любые две максимальные линейно независимые системы векторов эквивалентны.

Легко доказать, что любую линейно независимую систему векторов пространства L можно дополнить до максимальной линейно независимой системы векторов этого пространства.

Примеры:

1. Во множестве всех коллинеарных геометрических векторов любая система, состоящая их одного ненулевого вектора, является максимальной линейно независимой.

2. Во множестве всех компланарных геометрических векторов любые два неколлинеарных вектора составляют максимальную линейно независимую систему.

3. Во множестве всех возможных геометрических векторов трёхмерного евклидова пространства любая система трёх некомпланарных векторов является максимальной линейно независимой.

4. Во множестве всех многочленов степени не выше N С действительными (комплексными) коэффициентами система многочленов 1, х, х2, … , хn Является максимальной линейно независимой.

5. Во множестве всех многочленов с действительными (комплексными) коэффициентами примерами максимальной линейно независимой системы являются

а) 1, х, х2, … , хn, … ;

б) 1, (1 – х ), (1 – х )2, … , (1 – х )N, …

6. Множество матриц размерности M ´ N является линейным пространством (проверьте это). Примером максимальной линейно независимой системы в этом пространстве является система матриц Е11 = , Е12 =, … , Е Mn = .

Пусть дана система векторов С1, с2, … , ср (*). Подсистема векторов из (*) называется Максимальной линейно независимой Подсистемой Системы ( *) , если она линейно независима, но при добавлении к ней любого другого вектора этой система она становится линейно зависимой. Если система (*) конечна, то любая её максимальная линейно независимая подсистема содержит одно и то же число векторов. (Доказательство проведите самостоятельно). Число векторов в максимальной линейно независимой подсистеме системы (*) называется Рангом Этой системы. Очевидно, эквивалентные системы векторов имеют одинаковые ранги.

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторов и имеем набор чисел
, тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторов
называется линейно зависимой, если существует такой набор коэффициентов
, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть
, тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов
называется линейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всех
равных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

 Пусть
, тогда .

Получим
, следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию (12) система линейно зависима. 

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть
- линейно зависимая подсистема
, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой. 

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора и линейно зависимы тогда и только тогда, когда
.

Необходимость.

и - линейно зависимы
, что выполняется условие
. Тогда
, т.е.
.

Достаточность.

Линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

- линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

, (13)

где
и
. По правилу параллелограмма есть диагональ параллелограмма со сторонами
, но параллелограмм – плоская фигура
компланарны
- тоже компланарны.

Достаточность .

- компланарны. Приложим три вектора к точке О:

C

B`

– линейно зависимы 

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы
были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точку D, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипед OB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма
.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда)
, тогда

EMBED Equation.3 .

По теореме 1
такие, что . Тогда
, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Векторы, их свойства и действия с ними

Векторы, действия с векторами, линейное векторное пространство.

Векторы- упорядоченная совокупность конечного количества действительных чисел.

Действия: 1.Умножение вектора на число: лямда*вектор х=(лямда*х 1 , лямда*х 2 … лямда*х n).(3,4, 0, 7)*3=(9, 12,0,21)

2.Сложение векторов (принадлежат одному и тому же векторному пространству) вектор х+вектор у = (х 1 +у 1, х 2 +у 2, … х n +у n ,)

3. Вектор 0=(0,0…0)---n E n – n-мерное (линейное пространство) вектор х +вектор 0 = вектор х

Теорема. Для того чтобы система n векторов, n- мерного линейного пространства была линейно зависимой, необходимо и достаточно, чтобы один из векторов были линейной комбинацией остальным.

Теорема. Любая совокупность n+ 1ого вектора n- мерного линейного пространства явл. линейно зависимой.

Сложение векторов, умножение векторов на числа. Вычитание векторов.

Суммой двух векторов и называется вектор, направленный из начала вектора в конец вектора при условии, что начало совпадет с концом вектора. Если векторы заданы их разложениями по базисным ортам, то при сложении векторов складываются их соответствующие координаты.

Рассмотрим это на примере декартовой системы координат. Пусть

Покажем, что

Из рисунка 3 видно, что

Сумма любого конечного числа векторов может быть найдена по правилу многоугольника (рис. 4): чтобы построить сумму конечного числа векторов, достаточно совместить начало каждого последующего вектора с концом предыдущего и построить вектор, соединяющий начало первого вектора с концом последнего.

Свойства операции сложения векторов:

В этих выражениях m, n - числа.

Разностью векторов и называют вектор Второе слагаемое является вектором, противоположным вектору по направлению, но равным ему по длине.

Таким образом, операция вычитания векторов заменяется на операцию сложения

Вектор, начало которого находится в начале координат, а конец - в точке А (x1, y1, z1), называют радиус-вектором точки А и обозначают или просто. Так как его координаты совпадают с координатами точки А, то его разложение по ортам имеет вид

Вектор, имеющий начало в точке А(x1, y1, z1) и конец в точке B(x2, y2, z2), может быть записан в виде

где r 2 - радиус-вектор точки В; r 1 - радиус-вектор точки А.

Поэтому разложение вектора по ортам имеет вид

Его длина равна расстоянию между точками А и В

УМНОЖЕНИЕ

Так в случае плоской задачи произведение вектор на a = {ax; ay} на число b находится по формуле

a · b = {ax · b; ay · b}

Пример 1. Найти произведение вектора a = {1; 2} на 3.

3 · a = {3 · 1; 3 · 2} = {3; 6}

Так в случае пространственной задачи произведение вектора a = {ax; ay; az} на число b находится по формуле

a · b = {ax · b; ay · b; az · b}

Пример 1. Найти произведение вектора a = {1; 2; -5} на 2.

2 · a = {2 · 1; 2 · 2; 2 · (-5)} = {2; 4; -10}

Скалярное произведение векторов и где - угол между векторами и ; если либо , то

Из определения скалярного произведения следует, что

где, например, есть величина проекции вектора на направление вектора .

Скалярный квадрат вектора:

Свойства скалярного произведения:

Скалярное произведение в координатах

Если то

Угол между векторами

Угол между векторами - угол между направлениями этих векторов (наименьший угол).

Векторное произведение(Векторное произведение двух векторов.)- это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Произведение не является ни коммутативным, ни ассоциативным (оно является антикоммутативным) и отличается от скалярного произведения векторов. Во многих задачах инженерии и физики нужно иметь возможность строить вектор, перпендикулярный двум имеющимся - векторное произведение предоставляет эту возможность. Векторное произведение полезно для «измерения» перпендикулярности векторов - длина векторного произведения двух векторов равна произведению их длин, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности»

Коллинеарность векторов.

Два ненулевых (не равных 0) вектора называются коллинеа́рными, если они лежат на параллельных прямых или на одной прямой. Допусти́м, но не рекомендуется синоним - «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены («сонаправлены») или противоположно направлены (в последнем случае их иногда называют «антиколлинеарными» или «антипараллельными»).

Сме́шанное произведе́ние векторов(a, b,c) - скалярное произведение вектора a на векторное произведение векторов b и c:

(a,b,c)=a ⋅(b ×c)

иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее - псевдоскаляр).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами(a,b,c) .

Свойства

Смешанное произведение кососимметрично по отношению ко всем своим аргументам:т. е. перестановка любых двух сомножителей меняет знак произведения. Отсюда следует, чтоСмешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и:

Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и, взятому со знаком "минус":

В частности,

Если любые два вектора параллельны, то с любым третьим вектором они образуют смешанное произведение равное нулю.

Если три вектора линейно зависимы (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю.

Геометрический смысл - Смешанное произведение по абсолютному значению равно объёму параллелепипеда (см. рисунок), образованного векторами и; знак зависит от того, является ли эта тройка векторов правой или левой.

Компланарность векторов.

Три вектора (или большее число) называются компланарными, если они, будучи приведенными к общему началу, лежат в одной плоскости

Свойства компланарности

Если хотя бы один из трёх векторов - нулевой, то три вектора тоже считаются компланарными.

Тройка векторов, содержащая пару коллинеарных векторов, компланарна.

Смешанное произведение компланарных векторов. Это - критерий компланарности трёх векторов.

Компланарные векторы - линейно зависимы. Это - тоже критерий компланарности.

В 3-мерном пространстве 3 некомпланарных вектора образуют базис

Линейно зависимые и линейно независимые векторы.

Линейно зависимые и независимые системы векторов. Определение . Система векторов называется линейно зависимой , если существует хотя бы одна нетривиальная линейная комбинация этих векторов, равная нулевому вектору. В противном случае, т.е. если только тривиальная линейная комбинация данных векторов равна нулевому вектору, векторы называются линейно независимыми .

Теорема (критерий линейной зависимости) . Для того чтобы система век торов линейного пространства была линейно зависимой, необходимо и достаточно, чтобы, по крайней мере, один из этих векторов являлся линейной комбинацией остальных.

1) Если среди векторов имеется хотя бы один нулевой вектор, то вся система векторов линейно зависима.

В самом деле, если, например, , то, полагая , имеем нетривиальную линейную комбинацию .▲

2) Если среди векторов некоторые образуют линейно зависимую систему, то и вся система линейно зависима.

Действительно, пусть векторы , , линейно зависимы. Значит, существует нетривиальная линейная комбинация , равная нулевому вектору. Но тогда, полагая , получим также нетривиальную линейную комбинацию , равную нулевому вектору.

2. Базис и размерность. Определение . Система линейно независимых векторов векторного пространства называетсябазисом этого пространства, если любой вектор из может быть представлен в виде линейной комбинации векторов этой системы, т.е. для каждого вектора существуют вещественные числа такие, что имеет место равенство Это равенство называется разложением вектора по базису , а числа называютсякоординатами вектора относительно базиса (или в базисе ) .

Теорема (о единственности разложения по базису) . Каждый вектор пространства может быть разложен по базису единственным образом, т.е. координаты каждого вектора в базисе определяются однозначно.

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.


Понятия линейной зависимости и независимости системы векторов является очень важными при изучении алгебры векторов, так как на них базируются понятия размерности и базиса пространства. В этой статье мы дадим определения, рассмотрим свойства линейной зависимости и независимости, получим алгоритм исследования системы векторов на линейную зависимость и подробно разберем решения примеров.

Навигация по странице.

Определение линейной зависимости и линейной независимости системы векторов.

Рассмотрим набор из p n-мерных векторов , обозначим их следующим образом . Составим линейную комбинацию этих векторов и произвольных чисел (действительных или комплексных): . Отталкиваясь от определения операций над n -мерными векторами, а так же свойств операций сложения векторов и умножения вектора на число, можно утверждать, что записанная линейная комбинация представляет собой некоторый n -мерный вектор , то есть, .

Так мы подошли к определению линейной зависимости системы векторов .

Определение.

Если линейная комбинация может представлять собой нулевой вектор тогда, когда среди чисел есть хотя бы одно, отличное от нуля, то система векторов называется линейно зависимой .

Определение.

Если линейная комбинация представляет собой нулевой вектор только тогда, когда все числа равны нулю, то система векторов называется линейно независимой .

Свойства линейной зависимости и независимости.

На основании данных определений, сформулируем и докажем свойства линейной зависимости и линейной независимости системы векторов .

    Если к линейно зависимой системе векторов добавить несколько векторов, то полученная система будет линейно зависимой.

    Доказательство.

    Так как система векторов линейно зависима, то равенство возможно при наличии хотя бы одного ненулевого числа из чисел . Пусть .

    Добавим к исходной системе векторов еще s векторов , при этом получим систему . Так как и , то линейная комбинация векторов этой системы вида

    представляет собой нулевой вектор, а . Следовательно, полученная система векторов является линейно зависимой.

    Если из линейно независимой системы векторов исключить несколько векторов, то полученная система будет линейно независимой.

    Доказательство.

    Предположим, что полученная система линейно зависима. Добавив к этой системе векторов все отброшенные векторы, мы получим исходную систему векторов. По условию – она линейно независима, а в силу предыдущего свойства линейной зависимости она должна быть линейно зависимой. Мы пришли к противоречию, следовательно, наше предположение неверно.

    Если в системе векторов есть хотя бы один нулевой вектор, то такая система линейно зависимая.

    Доказательство.

    Пусть вектор в этой системе векторов является нулевым. Предположим, что исходная система векторов линейно независима. Тогда векторное равенство возможно только тогда, когда . Однако, если взять любое , отличное от нуля, то равенство все равно будет справедливо, так как . Следовательно, наше предположение неверно, и исходная система векторов линейно зависима.

    Если система векторов линейно зависима, то хотя бы один из ее векторов линейно выражается через остальные. Если система векторов линейно независима, то ни один из векторов не выражается через остальные.

    Доказательство.

    Сначала докажем первое утверждение.

    Пусть система векторов линейно зависима, тогда существует хотя бы одно отличное от нуля число и при этом верно равенство . Это равенство можно разрешить относительно , так как , при этом имеем

    Следовательно, вектор линейно выражается через остальные векторы системы , что и требовалось доказать.

    Теперь докажем второе утверждение.

    Так как система векторов линейно независима, то равенство возможно лишь при .

    Предположим, что какой-нибудь вектор системы выражается линейно через остальные. Пусть этим вектором является , тогда . Это равенство можно переписать как , в его левой части находится линейная комбинация векторов системы, причем коэффициент перед вектором отличен от нуля, что указывает на линейную зависимость исходной системы векторов. Так мы пришли к противоречию, значит, свойство доказано.

Из двух последних свойств следует важное утверждение:
если система векторов содержит векторы и , где – произвольное число, то она линейно зависима.

Исследование системы векторов на линейную зависимость.

Поставим задачу: нам требуется установить линейную зависимость или линейную независимость системы векторов .

Логичный вопрос: «как ее решать?»

Кое-что полезное с практической точки зрения можно вынести из рассмотренных выше определений и свойств линейной зависимости и независимости системы векторов. Эти определения и свойства позволяют нам установить линейную зависимость системы векторов в следующих случаях:

Как же быть в остальных случаях, которых большинство?

Разберемся с этим.

Напомним формулировку теоремы о ранге матрицы, которую мы приводили в статье .

Теорема.

Пусть r – ранг матрицы А порядка p на n , . Пусть М – базисный минор матрицы А . Все строки (все столбцы) матрицы А , которые не участвуют в образовании базисного минора М , линейно выражаются через строки (столбцы) матрицы, порождающие базисный минор М .

А теперь поясним связь теоремы о ранге матрицы с исследованием системы векторов на линейную зависимость.

Составим матрицу A , строками которой будут векторы исследуемой системы :

Что будет означать линейная независимость системы векторов ?

Из четвертого свойства линейной независимости системы векторов мы знаем, что ни один из векторов системы не выражается через остальные. Иными словами, ни одна строка матрицы A не будет линейно выражаться через другие строки, следовательно, линейная независимость системы векторов будет равносильна условию Rank(A)=p .

Что же будет означать линейная зависимость системы векторов ?

Все очень просто: хотя бы одна строка матрицы A будет линейно выражаться через остальные, следовательно, линейная зависимость системы векторов будет равносильна условию Rank(A)

.

Итак, задача исследования системы векторов на линейную зависимость сводится к задаче нахождения ранга матрицы, составленной из векторов этой системы.

Следует заметить, что при p>n система векторов будет линейно зависимой.

Замечание : при составлении матрицы А векторы системы можно брать не в качестве строк, а в качестве столбцов.

Алгоритм исследования системы векторов на линейную зависимость.

Разберем алгоритм на примерах.

Примеры исследования системы векторов на линейную зависимость.

Пример.

Дана система векторов . Исследуйте ее на линейную зависимость.

Решение.

Так как вектор c нулевой, то исходная система векторов линейно зависима в силу третьего свойства.

Ответ:

Система векторов линейно зависима.

Пример.

Исследуйте систему векторов на линейную зависимость.

Решение.

Не сложно заметить, что координаты вектора c равны соответствующим координатам вектора , умноженным на 3 , то есть, . Поэтому, исходная система векторов линейно зависима.