Меню
Бесплатно
Главная  /  Отношения  /  Функции и характеристика белка таблица. Типы белков и их функции в организме человека

Функции и характеристика белка таблица. Типы белков и их функции в организме человека

    Структура белковых молекул. Связь свойств, функций и активности белков с их структурной организацией (специфичность, видовая принадлежность, эффект узнавания, динамичность, эффект кооперативного взаимодействия).

Белки - это высокомолекулярные азотсодержащие вещества, состоящие из остатков аминокислот, связанных между собой пептидными связями. Белки иначе называют протеинами;

Простые белки построены из аминокислот и при гидролизе распадаются соответственно только на аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождаются небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др.

Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают: фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы).

3. Структура белка.

Последовательность расположения аминокислотных остатков в полипептидной цепи белковой молекулы получила название первичной структуры белка . Первичная структура белка, помимо большого числа пептидных связей, обычно содержит также небольшое число дисульфидных (-S-S-) связей. Пространственная конфигурация полипептидной цепи, точнее тип полипептидной спирали, определяет вторичную структуру белка , она представлена в основном α-спиралью, которая фиксирована водородными связями. третичная структура -полипептидная цепь, свернутая целиком или частично в спираль, расположена или упакована в пространстве (в глобуле). Известная стабильность третичной структуры белка обеспечивается за счет водородных связей, межмолекулярных ван-дер-ваальсовых сил, электростатического взаимодействия заряженных групп и т д.

Четвертичная структура белка - структура, состоящая из оп­ределенного числа полипептидных цепей, занимающих строго фик­сированное положение относительно друг друга.

Классический пример белка, имеющего четвертичную структуру, являеться гемоглобин.

Физические свойства белков: высокая вязкость растворов,

незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление, способность к поглощению Уф-лучей при 280 нм, как и аминокислоты, амфотерны благодаря наличию свободных NH2-и СООН-групп и характеризуются соответственно всеми св-вами кислот и оснований. Обладают явно выраженными гидрофильными свойствами. Их растворы обладают очень низким осмотическим давлением, высокой вязкостью и незначительной способностью к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связано явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии.

Белки способны адсорбировать на своей поверхности низкомолекулярные органические соединения и неорганические ионы. Это свойство предопределяет транспортные функции отдельных белков.

Химические свойства белков разнообразны, поскольку боковые радикалы аминокислотных остатков содер­жат различные функциональные группы (-NH2, -СООН, -ОН, -SН и др.). Характерной для белков реакцией является гидролиз пептидных связей. Благодаря наличию и амино-, и карбоксильных групп белки обладают амфотерными свойст­вами.

Денатурация белка - разрушение связей, стабилизирующих четвертичную, третичную и вторичную структуры, приводящее к дезориентации конфигурации белковой молекулы и сопровождаемое потерей нативных св-в.

Различают физические (температура, давление, механическое воздействие, ультразвуковое и ионизирующее излучения) и химические (тяжелые металлы, кислоты, щелочи, органические растворители, алкалоиды) факторы, вызывающие денатурацию.

Обратным процессом является ренатурация , то есть восстановление физико-химических и биологических свойств белка. Ренатурация невозможна если затронута первичная структура.

Большинство белков денатурируют при нагревании их раствором выше 50-60 о С. Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению коли­чества свободных функциональных SH-rpyпп и изменению характера рассеивания рентгеновских лучей, развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры.

Сократительная функция. актин и миозин – специфические белки мышечной ткани. Структурная функция. фибриллярные белки, в частности коллаген в соединительной ткани, кератин в волосах, ногтях, коже,эластин в сосудистой стенке и др.

Гормональная функция. Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др. Некоторые гормоны являются производными аминокислот.

Питательная (резервная) функция. резервные белки, являющиеся источниками питания для плода, Основной белок молока (казеин) также выполняет главным образом питательную функцию.

    Биологические функции белков. Многообразие белков по структурной организации и биологической функции. Полиморфизм. Различия белкового состава органов и тканей. Изменения состава в онтогенезе и при заболеваниях.

-По степени сложности строения белки делят на простые и слож­ные. Простые или однокомпонентные белки состоят только из белковой части и при гидролизе дают аминокислоты. К сложным или двухкомпонентным относят белки, в состав которых входит протеин и добавочная группа небелковой природы, называемая простетической. ( могут высту­пать липиды, углеводы, нуклеиновые кислоты); соответственно сложные белки называют липопротеинами, гликопротеинами, нук-леопротеинами.

- По форме белковой молекулы белки разделяют на две группы: фибриллярные (волокнистые) и глобулярные (корпускулярные). Фибриллярные белки характеризуются высоким отношением их длины к диаметру (несколько десятков единиц). Их молекулы ни­тевидны и обычно собраны в пучки, которые образуют волокна. (являются главными компонентами наруж­ного слоя кожи, образуя защитные покровы тела человека). Они также участвуют в образовании соединительной ткани, включая хрящи и сухожилия.

Подавляющее количество природных белков относится к глобу­лярным. Для глобулярных белков характерно небольшое отношение длины к диаметру молекулы (несколько единиц). Имея более слож­ную конформацию, глобулярные белки выполняют и более раз­нообразные.

-По отношению к условно выбранным растворителям выделяют альбумины и глобулины . Альбумины очень хорошо растворяются в воде и в концентрированных солевых растворах.Глобулины не растворяются в воде и в растворах солей умерен­ной концентрации..

--Функциональная классификация белков наиболее удовлетвори­тельная, поскольку в ее основу положен не случайный признак а выполняемая функция. Кроме того, можно выделить сходство структур, свойств и функциональной активности входящих в ка­кой-либо класс конкретных белков.

Каталитически активные белки называют ферментами. Они осуществляют катализ практически всех химических превраще­ний в клетке. Подробно эта группа белков будет рассмотрена в главе 4.

Гормоны регулируют обмен веществ внутри клеток и интег­рируют обмен в различных клетках организма в целом.

Рецепторы избирательно связывают различные регуляторы (гормоны, медиаторы) на поверхности клеточных мембран.

Транспортные белки осуществляют связывание и транспорт веществ между тканями и через мембраны клетки.

Структурные белки . Прежде всего к этой группе относят белки, участвующие в построении различных биологических мембран.

Белки - ингибиторы ферментов составляют многочислен­ную группу эндогенных ингибиторов. Они осуществляют регуля­цию активности ферментов.

Сократительные белки обеспечивают механический процесс сокращения с использованием химической энергии.

Токсичные белки - некоторые белки и пептиды, выделяемые организмами (змеями, пчелами, микроорганизмами), являющиеся ядовитыми для других живых организмов.

Защитные белки. антите­ла - вещества белковой природы, вырабатываемые животным организмом в ответ на введение антигена. Антитела, взаимодейст­вуя с антигенами, дезактивируют их и тем самым защищают ор­ганизм от воздействия чужеродных соединений, вирусов, бакте­рий и т. д.

Белковый состав зависит от физиологич. Активности, состава пищи и режима питания, биоритмов. В процессе развития состав меняется значительно (от зиготы до формирования дифференцированных органов со специализированными ф-ми). Например, эритроциты содержат гемоглобин, обеспечивающий транспорт кислорода кровью, мыш-е кл-ки содержат сократительные белки актин и миозин, в сетчатке-белок родопсин и т д. При болезнях белковый состав меняется-протеинопатии. Наследственные протеинопатии развиваются в результате повреждений в генетическом аппарат. Какой-либо белок не синтезируется вовсе или синтезируется, но его первичная структура изменена (серповидно-клеточная анемия). Любая болезнь сопровождается изменением белкового состава т.е. развивается приобретённая протеинопатия. При этом первичная структура белков не нарушается, а происходит количественное изменение белков, особенно в тех органах и тканях, в которых развивается патологический процесс. Например, при панкреатитах снижается выработка ферментов, необходимых для переваривания пищевых веществ в ЖКТ.

    Факторы повреждения структуры и функции белков, роль повреждений в патогенезе заболеваний. Протеинопатии

Белковый состав организма здорового взрослого человека относительно постоянен, хотя возможны изменения количества отдельных белков в органах и тканях. При различных заболеваниях происходит изменение белкового состава тканей. Эти изменения называются протеинопатиями. Различают наследственные и приобретённые протеинопатии. Наследственные протеинопатии развиваются в результате повреждений в генетическом аппарате данного индивидуума. Какой-либо белок не синтезируется вовсе или синтезируется, но его первичная структура изменена. Любая болезнь сопровождается изменением белкового состава организма, т.е. развивается приобретённая протеинопатия. При этом первичная структура белков не нарушается, а обычно происходит количественное изменение белков, особенно в тех органах и тканях, в которых развивается патологический процесс. Например, при панкреатитах снижается выработка ферментов, необходимых для переваривания пищевых веществ в ЖКТ.

В некоторых случаях приобретённые протеинопатии развиваются в результате изменения условий, в которых функционируют белки. Так, при изменении рН среды в щелочную сторону (алкалозы различной природы) изменяется кон-формация гемоглобина, увеличивается его сродство к О 2 и снижается доставка О 2 тканям (гипоксия тканей).

Иногда в результате болезни повышается уровень метаболитов в клетках и сыворотке крови, что приводит к модификации некоторых белков и нарушению их функции

Кроме того, из клеток повреждённого органа в кровь могут выходить белки, которые в норме определяются там лишь в следовых количествах. При различных заболеваниях часто используют биохимические исследования белкового состава крови для уточнения клинического диагноза.

4. Первичная структура белков. Зависимость свойств и функций белков от их первичной структуры. Изменения первичной структуры, протеинопатии.

Урок изучения нового материала в 10-м классе. Данный материал учащиеся уже изучали в 9 классе, поэтому некоторые понятия им уже известны. Соответственно с ребятами ведется диалог о строении и функциях белков. С помощью учителя учащиеся узнают о классификации ферментов.

Для того, чтобы активизировать деятельность учащихся на уроке, приводятся интересные факты о белках, которые помогают ребятам и нацеливают их на дальнейшее усвоение нового материала. Так же для этих целей предлагается провести лабораторную работу. На данном уроке основная масса изучаемого материала записывается в виде таблиц, схемы, которые учитель строит в ходе урока вместе и учениками. Качество изучаемого материала проверяется в виде фронтального опроса. Урок рассчитан как на детей-аудиалов, так и визуалов.

Цель урока: дать представление о строении и функции белков.

Задачи: продолжить расширение и углубление знаний важнейших органических веществах клетки на основе изучения строения и функции белков, сформировать знания функциях белков и их важнейшей роли в органическом мире, продолжить формирование умения выявлять связи между строением и функциями веществ.

Основные понятия: белки, протеины, протеиды, пептид, пептидная связь, простые и сложные белки, первичная, вторичная, третичная и четвертичная структуры белков денатурация.

Средства обучения: таблицы по общей биологии, иллюстрирующие строение молекул белков; лабораторное оборудование для проведения лабораторной работы “Расщепление пероксида водорода с помощью ферментов, содержащихся в плетках листа элодеи”.

Ход урока

I. Изучение нового материала.

1. Рассказ учителя (или фрагмент лекции) об особенностях строения молекул белков как биополимеров, состоящих из большого количества разных аминокислот, между которыми происходит полимеризация на основе пептидной связи. Зарисовка и запись на доске и в тетрадях учащихся.

2. Самостоятельное изучение учащимися текста учебника (С.42) о классификации белков.

3. Беседа об уровнях организации белковой молекулы и химической основы каждого из четырех уровней (структур) этой молекулы, о денатурации как утрате белковой молекулы своей природной структуры.

Структура белковой молекулы.

Структура белка Характеристика Тип связи Схема (учащиеся рисуют самостоятельно)
Первичная Линейная структура – последовательность аминокислот в полипептидной цепи, которая определяет все другие структуры молекулы, а также свойства и функции белка. Пептидная.
Вторичная Закручивание полипептидной цепи в спираль или складывание в “гармошку”. Водородные связи.
Третичная Глобулярный белок: упаковка вторичной структуры в глобулу;
фибриллярный белок: несколько вторичных структур, уложенных параллельными слоями, или скручивание нескольких вторичных структур наподобие каната в суперспираль.
Ионные, водородные, дисульфидные, гидрофобные.
Четвертичная Встречается редко. Комплекс из нескольких третичных структур органической природы и неорганическое вещество, например, гемоглобин. Ионные, водородные, гидрофобные.

4. Рассказ учителя о многообразии функций белков с краткой записью в тетрадях сущности функций: структурной, ферментативной, транспортной, защитной, регуляторной, энергетической, сигнальной.

5. Лабораторная работа “Расщепление пероксида водорода с помощью ферментов, содержащихся в клетках листа элодеи”.

Ход работы:

а. Приготовьте микропрепарат листа элодеи и рассмотрите его под микроскопом.
б. Капните на микропрепарат немного пероксида водорода и еще раз рассмотрите, в каком состоянии находятся клетки листа элодеи.
в. Объясните, с чем связано выделение пузырьков из теток листа, что это за газ, на какие вещества может расщепиться пероксид водорода, какие ферменты участвуют в этом процессе?
г. Капните каплю пероксида на предметное стекло и, рассмотрев его под микроскопом, опишите наблюдаемую, картину. Сравните состояние пероксида водорода в листе элодеи и на стекле, сделайте выводы.

По завершении лабораторной работы следует провести беседу о биохимических реакциях, протекающих при участии белковых катализаторов-ферментов как основе жизнедеятельности клеток и организмов.

Химические свойства белков обусловлены их различным аминокислотным составом. Существуют белки хорошо растворимые в воде и совершенно нерастворимые, химически активные и устойчивые к действию различных агентов, способные укорачиваться и растягиваться и т. д.

Под влиянием различных факторов – высокой температуры, действия химических веществ, облучения, механического воздействия – может произойти разрушение структур белковой молекулы. Нарушение природной структуры белка называется денатурацией. Если воздействие перечисленных факторов было недолгим и несильным, то белок может вернуть свою природную структуру – обратимая денатурация (ренатурация), если же воздействие было долгим или сильным, то происходит нарушение не только третичной и вторичной структур, но и первичной – необратимая денатурация (рис. 3).

Функции белков.

Функция Характеристика
1. Строительная (структурная). Входят в состав клеточных мембран и органоидов клетки (липопротеиды и гликопротеиды), участвуют в образовании стенок кровеносных сосудов, хрящей, сухожилий (коллаген) и волос (кератин).
2. Двигательная Обеспечивается сократительными белками (актин и миозин), которые обуславливают движение ресничек и жгутиков, сокращение мышц, перемещение хромосом при делении клетки, движение органов растений.
3. Транспортная. Связывают и переносят с током крови многие химические соединения, например, гемоглобин и миоглобин транспортируют кислород, белки сыворотки крови переносят гормоны, липиды и жирные кислоты, различные биологически активные вещества.
4. Защитная. Выработка антител (иммуноглобулинов) в ответ на проникновение в нее чужеродных веществ (антигенов), которые обеспечивают иммунологическую защиту; участие в процессах свертывания крови (фибриноген и протромбин).
5, Сигнальная (рецепторная). Прием сигналов из внешней среды и передача команд в клетку за счет изменения третичной структуры встроенных в мембрану белков в ответ на действие факторов внешней среды. Например, гликопротеины (встроены в гликокал икс), опсин (составная часть светочувствительных пигментов родопсина и йодопсина), фитохром (светочувствительный белок растений).
6. Регуляторная. Белки-гормоны оказывают влияние на обмен веществ, т. е. обеспечивают гомеостаз, регулируют рост, размножение, развитие и другие жизненно важные процессы. Например, инсулин регулирует уровень глюкозы в крови, тироксин – физическое и психическое развитие и т.д.
7. Каталитическая (ферментативная). Белки-ферменты ускоряют биохимические процессы в клетке.
К. Запасающая Резервные белки животных: альбумин (яйца) запасает воду, ферритин – железо в клетках печени, селезенки; миоглобин – кислород в мышечных волокнах, казеин (молоко) и белки семян – источник питания для зародыша.
9. Пищевая (основной источник аминокислот). Белки пищи – основной источник аминокислот (особенно незаменимых) для животных и человека; казеин (белок молока) – основной источник аминокислот для детенышей млекопитающих.
10. Энергетическая. Являются источником энергии – при окислении 1 г белка выделяется 17,6 кДж энергии, но организм использует белки в качестве источника энергии очень редко, например, при длительном голодании.

Ферменты (энзимы) – это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при умеренной температуре, нормальном давлении и нейтральной среде. В таких условиях реакции синтеза или распада веществ протекали бы очень медленно, если бы не подвергались воздействию ферментов. Ферменты ускоряют реакцию без изменения ее общего результата за счет снижения энергии активации. Это означает, что в их присутствии требуется значительно меньше энергии для придания реакционной способности молекулам, которые вступают в реакцию. Ферменты отличаются от химических катализаторов высокой степенью специфичности, т. е. фермент катализирует только одну реакцию или действует только на один тип связи. Скорость ферментативных реакций зависит от многих факторов – природы и концентрации фермента и субстрата, температуры, давления, кислотности среды, наличия ингибиторов и т.д.

Классификация ферментов.

Группа Катализируемые реакции, примеры
Оксидоредуктазы. Окислительно-восстановительные реакции: перенос атомов водорода (Н) и кислорода (О) или электронов от одного вещества к другому, при этом окисляется первый и восстанавливается второй. Участвуют во всех процессах биологического окисления, например, вдыхании: АН + В А ВН (окисленный) или А + О АО (восстановленный).
Трансферазы. Перенос группы атомов (метильной, ацильной, фосфатной или аминогруппы) от одного вещества к другому. Например, перенос остатков фосфорной кислоты от АТФ на глюкозу или фруктозу под действием фототрансфераз:
АТФ + глюкоза глюкозо-6-фосфат + АДФ.
Гидролазы. Реакции расщепления сложных органических соединений на более простые путем присоединения молекул воды в месте разрыва химической связи (гидролиз). Например, амилаза (гидролизирует крахмал), липаза (расщепляет жиры), трипсин (расщепляет белки) и др.:
АВ + Н 2 0 АОН + ВН.
Лиазы Негидролитическое присоединение к субстрату или отщепление от него группы атомов. При этом могут разрываться связи С-С, C-N, С-О, C-S. Например, декарбоксилаза отщепляет карбоксильную группу:
Изомеразы Внутримолекулярные перестройки, превращение одного изомера в другой (изомеризация):
глюкозо-6-фосфат глюкозо-1-фосфат.
Лигазы (синтетазы) Реакции соединения двух молекул с образованием новых связей С–О, С–S, С–N, С–С, с использованием энергии АТФ. Например, фермент валин-тРНК-синтетаза, под действием которого образуется комплекс валин– тРНК:
АТФ + валин + тРНК АДФ + Н 3 Р0 4 + валин-тРНК.

Механизм действия фермента представлен на рис. 4. В молекуле каждого фермента имеется активный центр – это один или более участков, в которых происходит катализ за счет тесного контакта между молекулами фермента и специфического вещества (субстрата). Активным центром выступает или функциональная группа (например, ОН-группа), или отдельная аминокислота. Активный центр может формироваться связанными с ферментом ионами металлов, витаминами и другими соединениями небелковой природы – коферментами или кофакторами. Форма и химическое строение активного центра таковы, что с ним могут связываться только определенные субстраты в силу их идеального соответствия (комплементарности) друг другу.

Молекула фермента изменяет глобулярную форму молекулы субстрата. Молекула субстрата, присоединяясь к ферменту, тоже в определенных пределах изменяет свою конфигурацию для увеличения реакционности функциональных групп центра.

На заключительном этапе химической реакции фермент-субстратный комплекс распадается с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр может принимать новые молекулы субстрата.

II. Обобщающая беседа об основополагающей роли белков как самых необходимых химических соединений для жизней деятельности всего живого на Земле.

III. Закрепление знаний в процессе беседы с помощью следующих вопросов:

  1. Какие органические вещества клетки можно назвать самыми важными?
  2. Каким образом создается бесконечное разнообразие белков?
  3. Что собой представляют мономеры биополимера белка?
  4. Как формируется пептидная связь?
  5. Что собой представляет первичная структура белка?
  6. Каким образом происходит переход первичной структуры молекул белка во вторичную, а затем– в третичную и четвертичную?
  7. Какие функции могут выполнять белковые молекулы?
  8. Чем обусловлено многообразие функций белковых молекул?
  9. Приведите примеры белков, выполняющих самые разные функции. При ответе можно использовать следующую схему:

Биологические функции белков.

Это интересно.

Многие молекулы очень велики и по длине, и по молекулярной массе. Так, молекулярная масса инсулина – 5700, белка-фермента рибонуклеазы – 127 ООО, яичного альбумина – 36 ООО, гемоглобина – 65 ООО. В состав различных белков входят самые разные аминокислоты. Набор всех двадцати видов аминокислот содержит: казеин молока, миозин мышц и альбумин яйца. В белке-ферменте рибонуклеазе – 19, в инсулине – 18 аминокислот. Коллективу ученых под руководством академика Ю.А. Овчинникова удалось расшифровать сложную структуру белка родопсина, ответственного за процесс зрительного восприятия.

Кровь осьминогов, моллюсков и пауков имеет голубой цвет, потому что переносчиком кислорода у них служит не красный гемоглобин, содержащий атомы железа, а гемоцианин с атомами меди.

Почти половина необходимых нам белков, углеводов, 70–80% витаминов, значительное количество минеральных солей, аминокислот и других питательных элементов содержится в хлебе.

Американские ученые выделили из растения (семейство Пентадипландовых), произрастающего в Западной Африке, белок, который слаще сахара в 2 тыс. раз. Этот шестой известный науке сладкий белок, названный бразеином, содержится в плодах, которые с большой охотой поедают местные обезьяны. Биохимики расшифровали строение молекул сладкого белка, в каждой из них содержится 54 аминокислотных остатка.

IV. Домашнее задание: Изучить § 11, ответить на вопросы на с. 46. Приготовить сообщения или рефераты на темы: “Белки – биополимеры жизни”, “Функции белков – основа жизнедеятельности каждого организма на Земле”, “Денатурация и ренатурация, ее практическое значение”, “Многообразие ферментов, их роль в жизнедеятельности клеток и организмов” и др.

Используемые ресурсы:

  1. Каменский А.А. Общая биология 10–11: учеб.для общеобразоват. учреждений.– М.:Дрофа, 2006.
  2. Козлова Т.А. Тематическое и поурочное планирование по биологии к учебнику А.А.Каменского и др. “Общая биология 10–11”. – М.: Издательство “Экзамен”, 2006.
  3. Биология. Общая биология. 10–11 классы: рабочая тетрадь к учебнику Каменского А.А. и др. “Общая биология 10–11”– М.: Дрофа, 2011.
  4. Кириленко А.А. Молекулярная биология. Сборник заданий для подготовки к ЕГЭ: уровни А,В,С: учебно-методическое пособие. – Ростов н/Д: Легион, 2011.

1. Как называется процесс нарушения природной структуры белка, при котором сохраняется его первичная структура? Действие каких факторов может приводить к нарушению структуры белковых молекул?

Процесс нарушения природной структуры белков под влиянием каких-либо факторов без разрушения первичной структуры называется денатурацией. Денатурация белков может быть вызвана действием различных факторов, например, высокой температуры, концентрированных кислот и щелочей, тяжёлых металлов.

2. Чем фибриллярные белки отличаются от глобулярных? Приведите примеры фибриллярных и глобулярных белков.

Молекулы фибриллярных белков имеют вытянутую, нитевидную форму. Глобулярные белки характеризуются компактной округлой формой молекул. К фибриллярным белкам относятся, например, кератин, коллаген, миозин. Глобулярными белками являются глобулины и альбумины крови, фибриноген, гемоглобин и др.

3. Назовите основные биологические функции белков, приведите соответствующие примеры.

● Структурная функция. Белки входят в состав всех клеток и межклеточного вещества, являются компонентами различных структур живых организмов. Например, у животных белок коллаген входит в состав хрящей и сухожилий, эластин – в состав связок и стенок кровеносных сосудов, кератин является важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт.

● Ферментативная (каталитическая) функция. Белки-ферменты являются биологическими катализаторами, ускоряя протекание химических реакций в живых организмах. Например, пищеварительные ферменты амилаза и мальтаза расщепляют сложные углеводы до простых, пепсин – белки до пептидов, под действием липаз происходит расщепление жиров до глицерина и карбоновых кислот.

● Транспортная функция. Многие белки способны присоединять и переносить различные вещества. Например, гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют высшие карбоновые кислоты, а глобулины – ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из неё.

● Сократительная (двигательная) функция. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Например, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения, тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.

● Регуляторная функция. Некоторые белки и пептиды участвуют в регуляции различных физиологических процессов. Например, гормоны белково-пептидной природы инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) – процессы роста и физического развития.

● Сигнальная функция заключается в том, что некоторые белки, входящие в состав цитоплазматической мембраны клеток, в ответ на действие внешних факторов изменяют свою пространственную конфигурацию, тем самым обеспечивая приём сигналов из внешней среды и передачу информации в клетку. Например, белок опсин, входящий в состав пигмента родопсина, воспринимает свет и обеспечивает возникновение зрительного возбуждения рецепторов (палочек) сетчатки глаза.

● Защитная функция. Белки предохраняют организм от вторжения чужеродных объектов и от повреждений. Например, иммуноглобулины (антитела) участвуют в иммунном ответе, интерферон защищает организм от вирусной инфекции. Фибриноген, тромбопластин и тромбин обеспечивают свёртывание крови, предотвращая кровопотерю.

● Токсическая функция. Многие живые организмы выделяют белки-токсины, которые являются ядами для других организмов.

● Энергетическая функция. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии.

● Запасающая функция. Например, в семенах растений запасаются особые белки, которые используются при прорастании зародышем, а затем и проростком в качестве источника азота.

4. Что такое ферменты? Почему без их участия протекание большинства биохимических процессов в клетке было бы невозможным?

Ферменты – белки, которые выполняют функцию биологических катализаторов, т. е. ускоряют протекание химических реакций в живых организмах. Они катализируют реакции синтеза и расщепления различных веществ. Без участия ферментов эти процессы протекали бы слишком медленно или не протекали бы вовсе. Практически все процессы жизнедеятельности организмов обусловлены ферментативными реакциями.

5. В чем заключается специфичность ферментов? Какова её причина? Почему ферменты активно функционируют лишь в определённом диапазоне температуры, рН и других факторов?

Специфичность ферментов заключается в том, что каждый фермент ускоряет только одну реакцию либо действует только на определённый тип связи. Эта особенность объясняется соответствием пространственной конфигурации активного центра фермента тому или иному субстрату (субстратам).

Ферменты являются белками. Изменение рН, температуры и других факторов может вызвать денатурацию ферментов, в результате чего они теряют способность связываться со своими субстратами.

6. Почему белки, как правило, используются в качестве источников энергии лишь в крайних случаях, когда в клетках исчерпаны запасы углеводов и жиров?

Белки – основа жизни. Они выполняют чрезвычайно важные биологические функции, многие из которых (ферментативную, транспортную, двигательную и др.) не способны выполнять ни углеводы, ни жиры. Белки, использованные в качестве энергетического субстрата, дают столько же энергии, сколько и углеводы (1 г – 17,6 кДж) и в 2,2 раза меньше, чем жиры (1 г – около 39 кДж). Кроме того, при полном расщеплении белков (в отличие от углеводов и жиров) образуются не только СО 2 и Н 2 О, но также соединения азота и серы, причём некоторые из них токсичны для организма (например, NH 3). Поэтому энергетическую функцию у живых организмов выполняют прежде всего углеводы и жиры.

7*. У многих бактерий в процессах синтеза веществ, необходимых для нормального роста и размножения, участвует парааминобензойная кислота (ПАБК). В то же время в медицине для лечения ряда бактериальных инфекций используются сульфаниламиды - вещества, по структуре сходные с ПАБК. Как вы думаете, на чём основано лечебное действие сульфаниламидов?

С помощью фермента (дигидроптероатсинтетазы) бактерии осуществляют превращение ПАБК в продукт (дигидроптероевую кислоту), который далее используется для синтеза необходимых ростовых факторов. Из-за структурного сходства с ПАБК, сульфаниламиды также способны связываться с активным центром этого фермента, блокируя его работу (т.е. наблюдается конкурентное ингибирование). Это ведёт к нарушению синтеза ростовых факторов и нуклеиновых кислот у бактерий.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Работа и функции белков лежат в основе структуры любого организма и всех протекающих в нем жизненных реакций. Любые нарушения этих белков приводят к изменению самочувствия и нашего здоровья. Необходимость изучения строения, свойств и видов белков кроется в многообразии их функций.

Определение Ф.Энгельса "Жизнь есть способ существования белковых тел" до сих пор, по прошествии полутора веков, не потеряло своей правильности и актуальности.

Структурная функция

Вещество соединительной ткани и межклеточный матрикс формируют белки коллаген , эластин , кератин , протеогликаны .
Непосредственно участвуют в построении мембран и цитоскелета (интегральные, полуинтегральные и поверхностные белки) – спектрин (поверхностный, основной белок цитоскелета эритроцитов), гликофорин (интегральный, фиксирует спектрин на поверхности).
К данной функции можно отнести участие в создании органелл – рибосомы .

Ферментативная функция

Все ферменты являются белками.

В то же время есть данные о существовании рибозимов , т.е. рибонуклеиновых кислот, обладающих каталитической активностью.

Гормональная функция

Регуляцию и согласование обмена веществ в разных клетках организма осуществляют гормоны. Такие гормоны как инсулин и глюкагон являются белками, все гормоны гипофиза являются пептидами или небольшими белками.

Рецепторная функция

Эта функция заключается в избирательном связывании гормонов, биологически активных веществ и медиаторов на поверхности мембран или внутри клеток.

Транспортная функция

Только белки осуществляют перенос веществ в крови , например, липопротеины (перенос жира), гемоглобин (транспорт кислорода), гаптоглобин (транспорт гема), трансферрин (транспорт железа). Белки транспортируют в крови катионы кальция, магния, железа, меди и другие ионы.

Транспорт веществ через мембраны осуществляют белки - Na + ,К + -АТФаза (антинаправленный трансмембранный перенос ионов натрия и калия), Са 2+ -АТФаза (выкачивание ионов кальция из клетки), глюкозные транспортеры .

Резервная функция

В качестве примера депонированного белка можно привести производство и накопление в яйце яичного альбумина .
У животных и человека таких специализированных депо нет, но при длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени .

Сократительная функция

Существует ряд внутриклеточных белков, предназначенных для изменения формы клетки и движения самой клетки или ее органелл (тубулин , актин , миозин ).

Защитная функция

Защитную функцию, предупреждая инфекционный процесс и сохраняя устойчивость организма, выполняют иммуноглобулины крови, факторы системы комплемента (пропердин), при повреждении тканей работают белки свертывающей системы крови - например, фибриноген, протромбин, антигемофильный глобулин. Механическую защиту в виде слизистых и кожи осуществляют коллаген и протеогликаны .

К данной функции также можно отнести поддержание постоянства коллоидно-осмотического давления крови, интерстиция и внутриклеточных пространств, а также иные функции белков крови .

Белковая буферная система участвует в регуляции кислотно-щелочного состояния .

Существуют белки, которые являются предметом особого изучения:

Монеллин – выделен из африканского растения, обладает очень сладким вкусом, не токсичен и не способствует ожирению.

Резилин – обладает почти идеальной эластичностью, составляет „шарниры" в местах прикрепления крыльев насекомых.

Белки со свойствами антифриза обнаружены у антарктических рыб, они предохраняют кровь от замерзания

  • Вперёд >

Продолжение. См. № 11, 12, 13, 14/2005

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

III. Закрепление знаний

Заполнение таблицы «Уровни организации белков».

Таблица 5. Уровни организации белков

Уровень организации

Признаки

Связи, участвующие в образовании структуры

Первичная

Линейная последовательность аминокислот в полипептидной цепи

Ковалентные (пептидные) связи между остатком карбоксильной группы одной аминокислоты и остатком аминогруппы другой аминокислоты

Вторичная

Спираль, -структура или спирали с параметрами, отличными от -спиралей

Водородные связи между остатками карбоксильной группы одной аминокислоты и остатком аминогруппы другой, удаленной от первой на четыре аминокислотных остатка; в -структуре водородные связи между остатками карбоксильных и аминогрупп одной цепи и остатками одноименных групп другой цепи; в спиралях – аналогично -спиралям, но расстояние между витками иное

Третичная

Глобула, образующаяся в результате компактной укладки -спирали; -структуры, уложенные параллельными слоями; суперспираль – несколько спиралей, скрученных вместе

Ионные, дисульфидные мостики, гидрофобные, водородные

Четвертичная

Агрегат из нескольких глобул. Свойственна лишь белкам с особо сложной структурой

В основном силы межмолекулярного притяжения, в меньшей степени – водородные, ионные и ковалентные

IV. Домашнее задание

Изучить параграф учебника (белки, их содержание в живом веществе, строение и свойства аминокислот, образование пептидов, уровни организации белка, классификация белков).

Урок 10–11. Биологические функции белков

Оборудование: таблицы по общей биологии, схемы и рисунки, иллюстрирующие строение белков, схема классификации белков.

I. Проверка знаний

Работа по карточкам

Карточка 1. Юный биохимик, определяя содержание азота в чистом препарате белка, получил величину 39,9%. Как вы можете прокомментировать этот результат?

Карточка 2. Белок гемоглобин встречается у человека в двух вариантах:

    гемоглобин крови здорового человека (... вал-лей-лей-тре-про-вал-глу-лиз...);

    гемоглобин крови больного серповидноклеточной анемией (...вал-лей-лей-тре-про-глу-глу-лиз...). Чем вызвано заболевание?

Карточка 3. Как по молекулярной массе определить число возможных аминокислот в белке? От чего зависит возможная погрешность этой оценки?

Карточка 4. Сколько может существовать вариантов полипептидных цепей, включающих 20 аминокислот и состоящих из 50 аминокислотных остатков? Из 200 остатков?

Карточка 5. Заполните пропуски в тексте: «В результате взаимодействия различных... и образования... связей спирализованная молекула белка образует... структуру, которая, в свою очередь, зависит от... структуры белка, то есть от... аминокислот в молекуле полипептида. Субъединицы некоторых белков образуют... структуру. Примером такого белка является...».

Карточка 6. Ионы тяжелых металлов (ртути, свинца) и мышьяка, легко связываются с сульфидными группировками белков. Зная свойства сульфидов этих металлов, объясните, что произойдет с белком при соединении с этими металлами. Почему тяжелые металла являются ядами для организма?

1. Белки, их содержание в живом веществе, молекулярная масса.

2. Белки – непериодические полимеры. Строение и свойства аминокислот. Образование пептидов.

3. Первичная и вторичная структуры белковой молекулы.

4. Третичная и четвертичная структуры белка.

5. Классификация белков.

II. Изучение нового материала

1. Денатурация и другие свойства белков

Белки чрезвычайно разнообразны по своим физическим и химическим свойствам. Чем это обусловлено? (Беседа .) Приведем примеры разнообразия свойств белков.

1. Есть белки растворимые (например, фибриноген) и нерастворимые (например, фибрин) в воде.

2. Есть белки очень устойчивые (например, кератин) и неустойчивые (например, фермент каталаза с легко изменяющейся структурой).

3. У белков встречается разнообразная форма молекул – от нитей (миозин – белок мышечных волокон) до шариков (гемоглобин) и т.д.

Но всегда структура и свойства белка соответствуют выполняемой им функции.

В основе важнейшего свойства всех живых систем – раздражимости, лежит способность белков к обратимому изменению структуры в ответ на действие физических и химических факторов. Поскольку вторичная, третичная и четвертичная структуры белка создаются, в общем, более слабыми связями, чем первичная, то они оказываются менее стабильными. Например, при нагревании они легко разрушаются. При этом хотя у белка и сохраняется в целости первичная структура, он не может выполнять свои биологические функции, становится неактивным. Процесс разрушения природной конформации белка, сопровождающийся потерей активности, называется денатурацией. Разрыв части слабых связей, изменения конформации и свойств происходят и под действием физиологических факторов (например, под действием гормонов). Таким образом регулируются свойства белков – ферментов, рецепторов, транспортеров.

Эти изменения структуры обычно легко обратимы. Обратный денатурации процесс называется ренатурацией . Это свойство белков широко используется в медицинской и пищевой промышленности для приготовления некоторых медицинских препаратов, например антибиотиков, вакцин, сывороток, ферментов; для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства.

Если восстановление пространственной конфигурации белка невозможно, то денатурация считается необратимой. Обычно это происходит при разрыве большого количества связей, например при варке яиц.

Таким образом, белки имеют сложное строение, разнообразные формы и состав. Это делает их свойства многообразными. А это, в свою очередь, позволяет белкам выполнять многочисленные биологические функции.

2. Биологические функции белков

Белки выполняют целый ряд важнейших функций в клетке и организме, основными из которых являются следующие.

1. Структурная (строительная). Белки входят в состав всех клеточных мембран и органоидов клетки, а также внеклеточных структур. В качестве примера белка, выполняющего структурную функцию, можно привести кератин . Из этого белка состоят волосы, шерсть, рога, копыта, верхний отмерший слой кожи. В более глубоких слоях кожи расположены прокладки из белков коллагена и эластина . Именно эти белки обеспечивают прочность и упругость кожи. Они же содержатся в связках, соединяющих мышцы с суставами и суставы между собой.

2. Ферментативная. Белки являются биологическими катализаторами. Например, пепсин, трипсин и др. (подробно свойства белков-ферментов мы рассмотрим на следующих уроках).

3. Двигательная. Особые сократительные белки участвуют во всех видах движения клетки и организма: образовании псевдоподий, мерцании ресничек и биении жгутиков у простейших, сокращении мышц у многоклеточных животных, движении листьев у растений и др. Так, сокращение мышц обеспечивают мышечные белки актин и миозин , они же делают возможным ползание амебы.

4. Транспортная. В крови, в наружных клеточных мембранах, в цитоплазме и ядрах клеток есть различные транспортные белки. В крови имеются белки-транспортеры, которые узнают и связывают определенные гормоны и несут их к клеткам-мишеням. В наружных клеточных мембранах имеются белки-транспортеры, которые обеспечивают активный и строго избирательный транспорт внутрь и наружу клетки сахаров, аминокислот, различных ионов. Известны и другие транспортные белки, например гемоглобин и гемоцианин , переносящие кислород, и миоглобин , удерживающий кислород в мышцах.

5. Защитная. В ответ на проникновение в организм чужеродных белков или микроорганизмов, обладающих антигенными свойствами, лимфоциты крови образуют особые белки – антитела, способные связывать и обезвреживать их. В слюне и слезах содержится белок лизоцим – фермент, разрушающий клеточные стенки бактерий. Если на слизистую глаз или полости рта попадает микроб, его оболочка разрушается под действием лизоцима, и дальше с ним легко справляются защитные клетки. Фибрин и тромбин способствуют остановке кровотечений.

6. Энергетическая (питательная). Белки можно расщепить, окислить и получить энергию, необходимую для жизни. Правда, это не очень выгодно: энергетическая ценность белков по сравнению с жирами невысока и составляет 17,6 кДж (4,1 ккал) энергии на 1 г белка. Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы жиров и углеводов.

7. Регуляторная. Многие (хотя далеко не все) гормоны являются белками – например все гормоны гипофиза, гипоталамуса, поджелудочной железы (инсулин , глюкагон ) и др. Гормоны действуют на клетку, связываясь со специфическими рецепторами. Каждый рецептор узнает только один гормон. Рецепторы всех гормонов являются белками. Другим примером могут служить белки, которые регулируют образование и рост отдельных органов и тканей в процессе развития организма из зиготы. Фитохром растений является сложным светочувствительным белком, регулирующим фотопериодическую реакцию у растений.

8. Сигнальная (рецепторная). В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

9. Запасающая. Благодаря белкам в организме могут откладываться в запас некоторые вещества. Яичный альбумин служит водозапасающим белком в яичном «белке», казеин молока является источником энергии, а белок ферритин удерживает железо в яичном желтке, селезенке и печени.

10. Токсическая. Некоторые белки являются токсинами: яд кобры содержит нейротоксин .

III. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала.

IV. Домашнее задание

Изучить параграф учебника (свойства белков и их биологические функции).

Урок 12–13. Ферменты, их химический состав и структура. Биологическая роль ферментов

Оборудование: таблицы по общей биологии, схемы и рисунки, иллюстрирующие строение и механизм действия ферментов, схема классификации ферментов, оборудование для проведения лабораторной работы.

I. Проверка знаний

Работа по карточкам

Карточка 1. Установлено, что при достаточной калорийности пищи, но при отсутствии в ней белка у животных наблюдаются патологические явления: останавливается рост, изменяется состав крови и т.д. С чем это связано?

Карточка 2. Почему белки называют «носителями и организаторами жизни»?

Карточка 3. Какие особенности строения белковой молекулы обеспечивают ей выполнение многих функций, например транспортной, защитной, энергетической?

Карточка 4. Заполните пропуски в тексте: «Защитные белки называются... . Они связываются с..., попадающими в организм и называемыми... . Среди тысяч разнообразных белков... узнают только один... и с ним реагируют. Такой механизм сопротивления возбудителям заболеваний называется...».

Карточка 5. Какие сходные функции в живых организмах выполняют белки, углеводы и липиды?

Устная проверка знаний по вопросам

1. Денатурация и другие свойства белков. Связь строения, свойств и функций белков.

2. Биологические функции белков (трое учащихся ).

II. Изучение нового материала

1. Ферменты и их значение в процессах жизнедеятельности

Из курса химии вам известно, что такое катализатор. Это вещество, которое ускоряет реакцию, оставаясь в конце реакции неизменным (не расходуясь). Биологические катализаторы называются ферментами (от лат. fermentum – брожение, закваска), или энзимами .

Почти все ферменты – это белки (но не все белки – ферменты!). В последние годы стало известно, что и некоторые молекулы РНК имеют свойства ферментов.

Впервые высокоочищенный кристаллический фермент был выделен в 1926 г. американским биохимиком Дж.Самнером. Этим ферментом была уреаза , которая катализирует расщепление мочевины. К настоящему времени известно более 2 тыс. ферментов, и их количество продолжает расти. Многие из них выделены из живых клеток и получены в чистом виде.

В клетке постоянно идут тысячи реакций. Если смешать в пробирке органические и неорганические вещества точно в тех же соотношениях, что и в живой клетке, но без ферментов, то почти никаких реакций с заметной скоростью идти не будет. Именно благодаря ферментам реализуется генетическая информация и осуществляется весь обмен веществ.

Для названия большинства ферментов характерен суффикс -аза, который чаще всего прибавляется к названию субстрата – вещества, с которым взаимодействует фермент.

2. Строение ферментов

По сравнению с молекулярной массой субстрата ферменты имеют гораздо большую массу. Такое несоответствие наводит на мысль, что не вся молекула фермента участвует в катализе. Чтобы разобраться в этом вопросе, необходимо познакомиться со строением ферментов.

По строению ферменты могут быть простыми и сложными белками. Во втором случае в составе фермента кроме белковой части (апофермент ) имеется добавочная группа небелковой природы – активатор (кофактор , или кофермент ), вследствие чего образуется активный голофермент . Активаторами ферментов выступают:

1) неорганические ионы (например, для активации фермента амилазы, находящегося в слюне, необходимы ионы хлора (Сl–);

2) простетические группы (ФАД, биотин), прочно связанные с субстратом;

3) коферменты (НАД, НАДФ, кофермент А), непрочно связанные с субстратом.

Белковая часть и небелковый компонент в отдельности лишены ферментативной активности, но, соединившись вместе, приобретают характерные свойства фермента.

В белковой части ферментов содержатся уникальные по своей структуре активные центры, представляющие собой сочетание определенных аминокислотных остатков, строго ориентированных по отношению друг к другу (в настоящее время структура активных центров ряда ферментов расшифрована). Активный центр взаимодействует с молекулой субстрата с образованием «фермент-субстратного комплекса». Затем «фермент-субстратный комплекс» распадается на фермент и продукт или продукты реакции.

Согласно гипотезе, выдвинутой в 1890 г. Э.Фишером, субстрат подходит к ферменту, как ключ к замку , т.е. пространственные конфигурации активного центра фермента и субстрата точно соответствуют (комплементарны ) друг другу. Субстрат сравнивается с «ключом», который подходит к «замку» – ферменту. Так, активный центр лизоцима (фермента слюны) имеет вид щели и по форме точно соответствует фрагменту молекулы сложного углевода бактериальной палочки, которая расщепляется под действием этого фермента.

В 1959 г. Д. Кошланд выдвинул гипотезу, по которой пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу назвали гипотезой «руки и перчатки» (гипотеза индуцированного взаимодействия). Этот процесс «динамического узнавания» – на сегодня наиболее распространенная гипотеза.

3. Отличия ферментов от небиологических катализаторов

Ферменты во многом отличаются от небиологических катализаторов.

1. Ферменты значительно эффективнее (в 10 4 –10 9 раз). Так, единственная молекула фермента каталазы может расщепить за одну секунду 10 тыс. молекул токсичной для клетки перекиси водорода:

2Н 2 О 2 ––> 2H 2 O + O 2 ­,

которая возникает при окислении в организме различных соединений. Или еще один пример, подтверждающий высокую эффективность действия ферментов: при комнатной температуре одна молекула уреазы способна за за одну секунду расщепить до 30 тыс. молекул мочевины:

H 2 N–CO–NH 2 + Н 2 О ––> СО 2 ­ + 2NН 3 ­.

Не будь катализатора, на это потребовалось бы около 3 млн лет.

2. Высокая специфичность действия ферментов. Большинство ферментов действуют лишь на один или очень небольшое число «своих» природных соединений (субстратов). Специфичность ферментов отражает формула «один фермент – один субстрат» . Благодаря этому в живых организмах множество реакций катализируется независимо.

3. Ферменты доступны тонкой и точной регуляции. Активность фермента может увеличиваться или уменьшаться при незначительном изменении условий, в которых он «работает».

4. Небиологические катализаторы в большинстве случаев хорошо работают лишь при высокой температуре. Ферменты же, присутствуя в клетках в малых количествах, работают при обычной температуре и давлении (хотя рамки действия ферментов ограничены, так как высокая температура вызывает денатурацию). Поскольку большинство ферментов являются белками, их активность наиболее высока при физиологически нормальных условиях: t=35–45 °C; слабощелочная среда (хотя для каждого фермента существует свое оптимальное значение рН).

5. Ферменты образуют комплексы – так называемые биологические конвейеры. Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет своего рода биохимический конвейер.

6. Ферменты способны регулироваться, т.е. «включаться» и «выключаться» (правда, это относится не ко всем ферментам, например, не регулируется амилаза слюны и ряд других пищеварительных ферментов). В большинстве молекул апоферментов есть участки, которые узнают еще и конечный продукт, «сходящий» с полиферментного конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта мало, то фермент активизируется. Так регулируется множество биохимических процессов.

Таким образом, ферменты обладают целым рядом преимуществ по сравнению с небиологическими катализаторами.

4. Механизм действия ферментов

Ферменты действуют в живых организмах по тем же законам, что и любые катализаторы. Ферментативный катализ основан на снижении энергетического барьера (так называемой энергии активации) за счет образования промежуточных комплексов фермента с субстратом. В отсутствии, например, амилазы реакция между крахмалом и водой не идет потому, что молекулы не обладают достаточной для этой цели энергией. Фермент ускоряет химический процесс, т.к. в его присутствии требуется меньше энергии для «запуска» данной реакции. Рассмотрим механизм действия ферментов подробнее.

1. Катализируя реакцию, фермент тесно сближает молекулы «своих» субстратов, так что те части молекул, которым предстоит прореагировать, оказываются рядом.

2. Субстрат, присоединившись к ферменту, несколько изменяется. Фермент может притягивать электроны, вследствие чего в некоторых связях молекулы субстрата будет возникать напряжение. Это в свою очередь повышает реакционную способность молекулы, так как связи между атомами ослабевают, и они легче высвобождаются (предполагается, что именно так фермент и ускоряет реакцию).

3. Фермент «отрывает» атом (или атомы) от каждого из субстратов, после чего субстраты соединяются.

4. Отделившиеся атомы соединяются друг с другом и покидают фермент. Теперь фермент способен присоединить новые молекулы субстратов.

Чаще всего ферменты приурочены к определенным клеточным структурам. Они сохраняют свои свойства и вне организма. Ферменты успешно используют в хлебопекарной, пивоваренной, винодельческой, кожевенной, химической промышленности.

5. Классификация ферментов

Работа учащихся с текстом учебника и заполнение таблицы «Важнейшие группы ферментов» с последующей проверкой.

Таблица 6. Важнейшие группы ферментов

Номер и название классов

Катализируемые реакции

1. Оксидоредуктазы

2. Трансферазы

3. Гидролазы

4. Лиазы

5. Изомеразы

6. Лигазы (синтетазы)

Окислительно-восстановительные реакции: перенос атомов водорода или кислорода или электронов от одного вещества к другому

Перенос функциональных групп от одного вещества к другому

Гидролиз: реакции расщепления сложных органических веществ на более простые путем присоединения воды

Негидролитическое присоединение или отщепление функциональных групп

Изомеризация, т.е. превращение изомеров друг в друга

Реакции синтеза с использованием энергии АТФ

Каталаза разлагает пероксид водорода на воду и молекулярный кислород; цитохромы переносят и присоединяют электроны к атомам кислорода в процессе дыхания и к протонам в ходе реакций световой фазы фотосинтеза

Под действием фосфотрансфераз происходит перенос остатков фосфорной кислоты от АТФ на глюкозу или фруктозу

Амилаза гидролизует крахмал до мальтозы; трипсин гидролизует белки и пептиды до аминокислот

Отщепление карбоксильных групп декарбоксилазами

Взаимопревращения глюкозы и фруктозы в растениях под действием глюкозофосфатизомеразы

Карбоксилазы катализируют присоединение углекислого газа к органическим кислотам

III. Закрепление знаний

Лабораторнаяработы № 1. «Изучение каталитической активности фермента каталазы в живых тканях»

Оборудование:штативы, пробирки, склянки со свежим 3%-ным раствором пероксида водорода, ткани растений и животных, баночки с водой и элодеей, микроскопы, предметные и покровные стекла, пинцеты и пипетки.

Ход работы

1. Прилейте по 2 мл пероксида водорода в пробирки с сырым мясом, вареным мясом, сырым и вареным картофелем. Объясните наблюдаемые вами явления при действии пероксида на живые и мертвые ткани.

2. На предметное стекло в каплю воды поместите лист элодеи и рассмотрите под микроскопом при малом увеличении место отрыва листа от стебля.

3. Нанесите на лист элодеи две капли пероксида водорода, накройте покровным стеклом и под микроскопом рассмотрите место отрыва листа от стебля. Объясните бурное выделение пузырьков газа из поврежденных клеток листа элодеи.

4. Выводы.

    Как проявляется активность фермента в живых и мертвых тканях? Почему?

    Различается ли активность фермента в живых тканях растений и животных?

    Как бы вы предложили измерить скорость разложения пероксида водорода?

    Как вы считаете, все ли живые организмы содержат фермент каталазу, обеспечивающий разложение перекиси водорода? Ответ обоснуйте.

IV. Домашнее задание

Изучить параграф учебника (ферменты, их значение, строение, механизм действия и классификацию).

Урок 14–15. Нуклеиновые кислоты – непериодические полимеры. Строение нуклеотида. Образование полинуклеотидов. Образование двухцепочечной молекулы ДНК. Принцип комплементарности

Оборудование: таблицы по общей биологии, схемы и рисунки, иллюстрирующие строение и механизм действия ферментов, схема классификации ферментов, схема строения нуклеотида, модель строения ДНК.

I. Проверка знаний

Работа по карточкам

Карточка 1. Известно, что скорость химических реакций при снижении температуры на 10 °С уменьшается всего в 2–3 раза. Биохимики для большей стабильности анализируемых образцов хранят их при пониженной температуре. Тем не менее если у замерзающего человека температура тела падает хотя бы на 10 °С, то это приводит к серьезным, часто необратимым последствиям. Нет ли здесь противоречия?

Карточка 2. Из записных книжек Кифы Мокиевича: «Протеаза – фермент, расщепляющий пептидные связи в белках. Амилаза – фермент, расщепляющий гликозидные связи в углеводах. Известно, что все ферменты обладают крайне высокой специфичностью и подходят к субстрату, как ключ к замку. Раз субстраты у ферментов совпадают, то одинаковы и сами ферменты. Отсюда следует, что биохимикам достаточно изучить одну амилазу (скажем, из слюны человека) и одну протеазу (скажем, из стирального порошка) – ведь они идентичны!» Как бы вы могли возразить Кифе Мокиевичу?

Карточка 3. Из тканей крысы был выделен некоторый фермент. Его раствор при +4 °С сохраняет каталитическую активность на протяжении нескольких недель. После же того, как его поместили на 2 ч в термостат при +40 °С, он утратил 50% активности. Верно ли, что еще через 2 ч он стал бы полностью неактивным? Но в теле крысы отнюдь не +4 °С, а как раз +40 °С. Так нужен ли ей такой нестойкий фермент?

Карточка 4. Попробуйте составить список ферментов, необходимых для существования любой клетки. Если название того или иного фермента вам неизвестно, достаточно указать катализируемую им реакцию.

Карточка 5. Экспериментатор, изучая скорость расщепления белка протеазой, обнаружил, что она с течением времени сначала выросла в несколько раз, а потом упала – до полной утраты активности фермента. Как можно объяснить эту закономерность? Какие протеазы, по вашему мнению, обладают таким свойством?

Карточка 6. Почему активность фермента может зависеть от рН?

Карточка 7. Какими способами клетка может управлять скоростями протекающих в ней химических процессов? А какими способами может регулировать скорости химических процессов организм человека?

Карточка 8. Как вы понимаете «каталитический (ферментативный) конвейер в клетке»? В чем заключается преимущество конвейерного расположения молекул ферментов на мембране по сравнению со свободным, беспорядочным их положением в цитоплазме?

Устная проверка знаний по вопросам

1. Ферменты и их значение в процессах жизнедеятельности.

2. Строение ферментов и причина их высокой специфичности.

3. Отличия ферментов от небиологических катализаторов.

4. Механизм действия ферментов.

5. Классификация ферментов.

II. Изучение нового материала

1. Нуклеиновые кислоты, их содержание в клетке, размеры молекул и молекулярная масса

Нуклеиновые кислоты – природные высокомолекулярные органические соединения, полинуклеотиды, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Эти органические соединения были открыты в 1869 г. швейцарским врачом И.Ф. Мишером в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Нуклеиновые кислоты являются составной частью клеточных ядер, поэтому они и получили такое название (от лат. nucleus – ядро). Помимо ядра нуклеиновые кислоты встречаются также в цитоплазме, центриолях, митохондриях, хлоропластах.

В природе существуют нуклеиновые кислоты двух типов: дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Они различаются по составу, строению и функциям. ДНК имеет двухцепочечную молекулу, а РНК – одноцепочечную. Содержание нуклеиновых кислот в живом веществе – от 1 до 2%.

Нуклеиновые кислоты – биополимеры, достигающие огромных размеров. Длина их молекул равна сотням тысяч нанометров (1 нм = 10 –9 м), это в тысячи раз больше длины белковых молекул. Особенно велика молекула ДНК. Молекулярная масса нуклеиновых кислот достигает десятков миллионов и миллиардов (10 5 –10 9). Например, масса ДНК кишечной палочки равна 2,5x10 9 , а в ядре половой клетки человека (гаплоидный набор хромосом) длина молекул ДНК составляет 102 см.

2. НК – непериодические полимеры. Типы нуклеотидов и их строение

Нуклеиновые кислоты – непериодические биополимеры, полимерные цепи которых образованы мономерами, называемыми нуклеотидами. В молекулах ДНК и РНК содержится по четыре типа нуклеотидов. Нуклеотиды ДНК называют дезоксирибонуклеотидами, а РНК – рибонуклеотидами. Нуклеотидный состав ДНК и РНК отражают данные таблицы.

Таблица 7. Состав нуклеотидов ДНК и РНК

Рассмотрим строение нуклеотида. Нуклеотиды – сложные органические соединения, включающие в себя три компонента . Схема строения нуклеотида ДНК приведена на рисунке.

1. Азотистые основания имеют циклическую структуру, в состав которой наряду с атомами углерода входят атомы других элементов, в частности азота. За присутствие в этих соединениях атомов азота они и получили название «азотистые», а поскольку обладают щелочными свойствами – «основания». Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания являются производными пиримидина, имеющего в составе своей молекулы одно кольцо. В составе дезоксирибонуклеотидов обнаруживаются пиримидиновые основания тимин и цитозин , а в составе рибонуклеотидов – цитозин и урацил . Урацил отличается от тимина отсутствием метильной группы (–СН 3).

Пуриновые основания являются производными пурина, имеющего два кольца. К пуриновым основаниям относятся аденин и гуанин . Они входят в состав нуклеотидов как ДНК, так и РНК.

2. Углевод – пентоза (C 5 ). Этот компонент также принимает участие в образовании нуклеотидов. В составе нуклеотидов ДНК содержится пентоза – дезоксирибоза, а в составе нуклеотидов РНК – рибоза. Углеводный состав нуклеотидов отражен, как мы видим, в названиях нуклеиновых кислот: дезоксирибонуклеиновая и рибонуклеиновая. Соединения пентозы с азотистым основанием получили название «нуклеозиды».

3. Остаток фосфорной кислоты. Фосфат придает нуклеиновым кислотам кислые свойства.

Итак, нуклеотид состоит из азотистого основания, пентозы и фосфата. В составе нуклеотидов с одной стороны к углеводу присоединено азотистое основание, а с другой – остаток фосфорной кислоты.

Продолжение следует