Меню
Бесплатно
Главная  /  Здоровье  /  Определение состава вещества электрохимическим методом. Электрохимические методы исследования

Определение состава вещества электрохимическим методом. Электрохимические методы исследования

Физико-химические методы анализа (ФХМА) основаны на использовании зависимости между измеряемыми физическими свойствами веществ и их качественным и количественным составом. Поскольку физические свойства веществ измеряются с помощью различных приборов – «инструментов», то эти методы анализа называют также инструментальными методами.

Наибольшее практическое применение среди ФХМА имеют:

- электрохимические методы – основаны на измерении потенциала, силы тока, количества электричества и других электрических параметров;

- спектральные и другие оптические методы – основаны на явлениях поглощения или испускания электромагнитного излучения (ЭМИ) атомами или молекулами вещества;

- хроматографические методы – основаны на сорбционных процессах, протекающих в динамических условиях при направленном перемещении подвижной фазы относительно неподвижной.

К достоинствам ФХМА можно отнести высокую чувствительность и низкий предел обнаружения – массовый до 10-9 мкг и концентрационный до 10-12 г/мл, высокую селективность (избирательность), позволяющую определять компоненты смесей без их предварительного разделения, а также экспрессность проведения анализов, возможность их автоматизации и компьютеризации.

В аналитической химии широко применяются электрохимические методы. Выбор метода анализа конкретного объекта анализа определяется многими факторами, в том числе, в первую очередь, нижним пределом определения элемента.

Данные о нижнем пределе обнаружения различных элементов некоторыми методами представлены в таблице.

Пределы определения (мкг/мл) элементов различными методами

Элемент МАС ААС ПТП ИВА Ионо- метрия Ампером.титров.
Ag 0,1– дитизон 0,07 0,2 0.00001 0.02 0.05
As 0,05 - молибд.синь 0,2 0,04 0,02 - 0,05
Au 0,04-метил.фиол. 0,3 0,005 0,001 - 0,05
Bi 0,07-дитизон 0,005 0,00001 - 0,5
Cd 0,04-дитизон 0,05 0,002 0,00001 0,03 0,5
Cr 0,04-дифе-нилкарбазид 0,2 0,02 - -
Cu 0,03-дитизон 0,2 0,002 0,00002 0,01 0,05
Hg 0,08-дитизон - 0,00005
Pb 0,08-дитизон 0,6 0,003 0,00002 0,03
Sb 0,08-родамин 0,004 0,00004 - 0,5
Fe 0,1-роданид 0,2 0,003 0,0002 0,3 0,5
Se 0,08-диами-нофталин 0,3 0,2 0,00002 - 0,5
Sn 0,07-фенил-флуриом 0,4 0,003 0,00004 - 0,5
Te 0,1-висмутол 0,7 0,02 - -
Tl 0,06-родамин 0,6 0,01 0,00002 - 0,5
Zn 0,02-дитизон 0,02 0,003 0,0003 - 0,5
F - - - - - 0,02 5-10
NH 4 + ,NO 3 - - - - - 0,1 1-5

МАС - молекулярная абсорбционная спекрометрия (фотометрия);

ААС - атомно-абсорбционная спектрометрия (пламенная фотометрия);

ПТП - переменно-токовая полярография;

ИВА - инверсионная вольтамперометрия.

Погрешности определений в ФХМА составляют около 2-5%, проведение анализов требует применения сложной и дорогостоящей аппаратуры.

Различают прямые и косвенные методы физико-химического анализа. В прямых методах используют зависимость величины измеряемого аналитического сигнала от концентрации определяемого компонента. В косвенных методах аналитический сигнал измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, то есть используют зависимость измеряемого параметра от объѐматитранта.

Электрохимические методы анализа основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, электрический ток, количество электричества и др.), функционально связанный с концентрацией определяемого компонента и поддающийся правильному измерению, может служить аналитическим сигналом.

По природе измеряемого аналитического сигнала электрохимические методы анализа разделяют на потенциометрию, вольтамперометрию, кулонометрию и ряд других методов:

Характеристическая зависимость электрохимического сигнала от независимой переменной

Метод Измеряемый сигнал Зависимость сигнала от независимой переменной
Потенциометрия, ионометрия потенциал E = f(C) С-концентрация анализируемого вещества
Потенциометрическое титрование потенциал E = f(V), V- объем реагента-титранта
полярография, вольтамперометрия ток I = f(E), E – потенциал поляризации электрода
инверсионная вольтамперометрия ток I n = f(E)
хронопотенциометрия потенциал E =f(t), t – время поляризации электрода при I=const.
амперометрическое титрование с одним индикаторным электродом ток I = f(V), V – объем реагента-титранта
амперометрическое титрование с двумя индикаторными электродами ток I = f(V) V – объем реагента-титранта
кулонометрия Q = f(C), С – количество вещества
кондуктометрия G = f(C), С – концентрация ионов в растворе
кондуктометрическое титрование электропроводность G = f(V), V – объем реагента-титранта

Потенциометрия

В основе потенциометрических измерений лежит зависимость равновесного потенциала электрода от активности (концентрации) определяемого иона. Для измерений необходимо составить гальванический элемент из подходящего индикаторного электрода и электрода сравнения, а также иметь прибор для измерения потенциала индикаторного электрода (ЭДС гальванического элемента), в условиях близких к термодинамическим, когда индикаторный электрод имеет равновесный (или близкий к нему) потенциал, то есть без отвода заметного тока от гальванического элемента при замыкании цепи. При этом нельзя использовать обычный вольтметр, а следует применять потенциометр - электронный прибор с большим входным сопротивлением (1011 - 1012 Ом), что исключает протекание электродных электрохимических реакций и возникновение тока в цепи.

Индикаторный электрод – это электрод, потенциал которого зависит от активности (концентрации) определяемого иона в анализируемом растворе.

Электрод сравнения – это электрод, потенциал которого в условиях проведения анализа остается постоянным. По отношению к электроду сравнения измеряют потенциал индикаторного электродаЕ (ЭДС гальванического элемента).

В потенциометрии используют два основных класса индикаторных электродов – электронообменные и ионообменные.

Электронообменныеэлетроды – это электроды, на поверхности которых протекают электродные реакции с участием электронов. К таким электродам относятся электроды первого и второго рода, окислительно-восстановительные электроды.

Электроды первого рода – это электроды, обратимые по катиону, общему с материалом электрода, например, металл М, погруженный в раствор соли того же металла. На поверхности такого электрода протекает обратимая реакция M n+ + ne ↔ M и его реальный потенциал зависит от активности (концентрации) катионов металла в растворе в соответствии с уравнением Нернста:

Для температуры 250С (298 K) и для условий, когда активность ионов приблизительно равна концентрации (γ → 1):

Электроды первого рода могут быть изготовлены из различных металлов, например, Ag (серебряный), Cu (медный), Zn (цинковый), Pb (свинцовый) и др.

Схематически электроды первого рода записывают как М | M n + , где вертикальной линией показана граница твердой (электрод) и жидкой (раствор) фаз. Например, серебряный электрод, погруженный в раствор нитрата серебра изображают следующим образом – Ag | Ag+; при необходимости указывают концентрацию электролита – Ag | AgNO 3 (0,1 M).

К электродам первого рода относится и газовый водородный электрод Pt(H 2) | H+ (2Н + + ↔ Н 2 , Е 0 = 0):

Электроды второго рода – это электроды, обратимые по аниону, например, металл, покрытый малорастворимой солью этого металла, погруженный в раствор, содержащий анион этой малорастворимой соли M, MA | А n- . На поверхности такого электрода протекает обратимая реакция MА + ne ↔ M + А n- и его реальный потенциал зависит от активности (концентрации) аниона в растворе в соответствии с уравнением Нернста (приТ = 298 K и γ → 1):

Примерами электродов второго рода служат хлорсеребряный (AgCl + e ↔ Ag + Cl -) и каломельный (Hg 2 Cl 2 + 2e ↔ 2Hg + 2Cl -) электроды:

Окислительно-восстановительные электроды – это электроды, которые состоят из инертного материала (платина, золото, графит, стеклоуглерод и др.), погруженного в раствор, содержащий окисленную (Ок) и восстановленную (Вос) формы определяемого вещества. На поверхности такого электрода протекает обратимая реакция Ок + ne ↔ Вос и его реальный потенциал зависит от активности (концентрации) окисленной и восстановленной форм вещества в растворе в соответствии с уравнением Нернста (приТ = 298 K и γ → 1):

Если в электродной реакции участвуют ионы водорода, то их активность (концентрацию) учитывают в соответствующих уравнениях Нернста для каждого конкретного случая.

Ионообменные электроды – это электроды, на поверхности которых протекают ионообменные реакции. Такие электроды называют также ионселективными или мембранными. Важнейшей составной частью таких электродов является полупроницаемая мембрана – тонкая твердая или жидкая пленка, отделяющая внутреннюю часть электрода (внутренний раствор) от анализируемого и обладающая способностью пропускать только ионы одного вида Х (катионы или анионы). Конструктивно мембранный электрод состоит из внутреннего электрода сравнения (обычно хлорсеребряный) и внутреннего раствора электролита с постоянной концентрацией потенциалопределяющего иона, отделенных от внешнего (исследуемого) раствора чувствительной мембраной.

Реальный потенциал ионселективных электродов, измеренный относительно какого-либо электрода сравнения, зависит от активности тех ионов в растворе, которые сорбируются мембраной:

где const – константа, зависящая от природы мембраны (потенциал асимметрии ) и разности потенциалов внешнего и внутреннего электродов сравнения, n иа n ±) – заряд и активность потенциалопределяющего иона. Если потенциал ионселективного электрода измерен относительно стандартного водородного электрода, то константа является стандартным электродным потенциалом Е 0.

Для мембранных электродов значение крутизны электродной функции может отличаться от теоретической нернстовской величины (0,059 В); в этом случае реальное значение электродной функции θ определяют как тангенс угла наклона градуировочного графика. Тогда:

Потенциал мембранного электрода в растворе, содержащем кроме определяемого иона Х посторонний ион В, влияющий на потенциал электрода, описывается уравнением Никольского (модифицированное уравнение Нернста):

где z – заряд постороннего (мешающего) иона, K Х/В – коэффициент селективности мембранного электрода.

Коэффициент селективности K Х/В характеризует чувствительность мембраны электрода к определяемым ионам Х в присутствии мешающих ионов В. Если K Х/В <1, то электрод селективен относительно ионов Х и, чем меньше числовое значение коэффициента селективности, тем выше селективность электрода по отношению к определяемым ионам и меньше мешающее действие посторонних ионов. Если коэффициент селективности равен 0,01, то это означает, что мешающий ион В оказывает на величину электродного потенциала в 100 раз меньшее влияние, чем определяемый ион той же молярной концентрации.

Рассчитывают коэффициент селективности как отношение активностей (концентраций) определяемого и мешающего ионов, при которых электрод приобретает одинаковый потенциал в растворах этих веществ, с учѐтом их зарядов:

Зная значение коэффициента селективности можно рассчитать концентрацию мешающего иона, влияющую на потенциал ионселективного электрода (пример).

Пример. Какую концентрацию нитратных ионов нужно создать в 1∙10-3 М растворе фторида натрия, чтобы ионселективный фторидный электрод был одинаково чувствителен к обоим ионам, если его коэффициент селективности электрода?

Решение.

Так как, то

Это означает, что концентрация нитратных ионов в анализируемом растворе свыше 0,5 моль/л оказывает значительное влияние на определение фторид-иона в его миллимо-лярных растворах.

Классическим примером ионселективного электрода с твердой мембраной является стеклянный электрод с водородной функцией, служащий для измерения концентрации ионов водорода в растворе (стеклянный рН-электрод). Для таких электродов мембраной служит специальное стекло определѐнного состава, а внутренним электролитом – 0,1 М раствор хлороводородной кислоты:

Ag, AgCl | 0,1 M HCl | стеклянная мембрана | исследуемый раствор

На поверхности стеклянной мембраны происходит ионообменный процесс:

SiO-Na+ (стекло) + Н+ (раствор) → -SiO-H+ (стекло) + Na+ (раствор)

в результате чего устанавливается динамическое равновесие между ионами водорода в стекле и растворе Н+ (стекло) ↔ Н+ (раствор), что приводит к возникновению потенциала:

E = const + θ lga (H+) = const θ pH

Стеклянный электрод с повышенным содержанием в мембране Al2O3 измеряет ак-тивность ионов натрия в растворе (стеклянный Na-электрод, натрийселективныйэлек-трод). В этом случае внутренним раствором служит 0,1 М раствор хлорида натрия:

Ag, AgCl | 0,1 M NaCl | стеклянная мембрана | исследуемый раствор

На поверхности стеклянной мембраны натрийселективного электрода устанавливается равновесие между ионами натрия в стекле и растворе Na+ (стекло) ↔ Na+ (раствор), что приводит к возникновению потенциала:

E = const + θ lga (Na+) = const θ pNa

Наиболее совершенным электродом с кристаллической мембраной является фторидселективный электрод, мембрана которого выполнена из пластинки монокристалла фторида лантана (LaF3), активированного для увеличения проводимости фторидом европия (EuF 2):

Ag, AgCl | 0,1 M NaCl, 0,1 M NaF | LaF 3 (EuF 2) | исследуемый раствор

Потенциал фторидного электрода определяется ионообменным процессом на его поверхности F- (мембрана) ↔ F- (раствор):

E = const – θ lga (F-) = const + θ pF

Значения константы и крутизны электродной функции θ для ионселективных электродов определяют из градуировочного графикаЕ ÷ рХ как отрезок на оси ординат и тангенс угла наклона прямой соответственно. Для стеклянного рН-электрода эта операция заменяется настройкой приборов (рН-метров) по стандартным буферным растворам с точно известными значениями рН.

Схематический вид стеклянного и фторидселективного электродов приведены на рисунках:

В паре с индикаторным электродом для измерения его потенциала (ЭДС гальванической ячейки) используют электрод сравнения с известным и устойчивым потенциалом, не зависящим от состава исследуемого раствора. Наиболее часто в качестве электрода сравнения применяют хлорсеребряный и каломельный электроды. Оба электрода относятся к электродам второго рода и характеризуются высокой стабильностью в работе.

Потенциалы хлорсеребряного и каломельного электродов зависят от активности (концентрации) хлорид-ионов (приТ = 298 K и γ → 1):

В качестве электродов сравнения чаще всего применяют электроды с насыщенным раствором хлорида калия – при 250С потенциал насыщенного хлорсеребряного электрода сравнения равен +0,201 В, а насыщенного каломельного +0,247 В (относительно стандартного водородного электрода). Потенциалы для хлорсеребряных и каломельных электродов сравнения, содержащих 1 М и 0,1 М растворы хлорида калия, можно найти в справочных таблицах.

Схематический вид насыщенных хлорсеребряного и каломельного электродов срав-нения приведены на рисунке:

Электроды сравнения хлорсеребряный (а) и каломельный (б)

1 - асбестовое волокно, обеспечивающее контакт с анализируемым раствором

2 - раствор KCl (насыщенный)

3 - отверстие для контакта

4 - раствор KCl (насыщенный), AgCl (тв.)

5 - отверстие для ввода раствора KCl

6 - паста из смеси Hg2Cl2, Hg и КС1 (насыщенный)

Потенциометрический анализ широко применяют для непосредственного определения активности (концентрации) ионов в растворе путем измерения равновесного потенциала индикаторного электрода (ЭДС гальванического элемента) – прямая потенциометрия (ионометрия) , а также для индикации конечной точки титрования (ктт ) по изменению потенциала индикаторного электрода в процессе титрования (потенциометрическое титрование).

Во всех приемахпрямой потенциометрии используется зависимость индикаторного электрода от активности (концентрации) определяемого иона, которая описывается уравнением Нернста. Результаты анализа подразумевают определение концентрации вещества, а не его активности, что возможно при значении коэффициентов активности ионов равных единице (γ → 1) или их постоянном значении (постоянной ионной силе раствора), поэтому в дальнейших рассуждениях используются только концентрационные зависимости.

Концентрация определяемого иона может быть рассчитана по экспериментально найденному потенциалу индикаторного электрода, если для электрода известны постоянная составляющая (стандартный потенциал Е 0) и крутизна электродной функции θ . В этом случае составляется гальванический элемент, состоящий из индикаторного электрода и электрода сравнения, измеряется его ЭДС, рассчитывается потенциал индикаторного электрода (относительно СВЭ) и концентрация определяемого иона.

В методеградуировочного графика готовят серию стандартных растворов с известной концентрацией определяемого иона и постоянной ионной силой, измеряют потенциал индикаторного электрода относительно электрода сравнения (ЭДС гальванического элемента) в этих растворах и по полученным данным строят зависимость Е ÷ рС (А) (градуировочный график). Затем измеряют потенциал индикаторного электрода в анализируемом растворе Е х (в тех же условиях) и по графику определяют рС х(А) и рассчитывают концентрацию определяемого вещества в анализируемом растворе.

В методе стандарта (сравнения) измеряют потенциал индикаторного электрода в анализируемом растворе (Е х) и в стандартном растворе определяемого вещества (Е ст). Расчет концентрации определяемого иона проводят исходя из уравнений Нернста для анализируемой пробы и стандартного образца. Крутизна электродной функции для индикаторного электрода θ

При использовании метода добавок сначала измеряют потенциал индикаторного электрода в анализируемом растворе (Е х), затем добавляют к нему определенный объём стандартного раствора определяемого вещества и измеряют потенциал электрода в полученном растворе с добавкой (Е х+д). Расчет концентрации определяемого иона проводят исходя из уравнений Нернста для анализируемой пробы и пробы с добавкой. Крутизна электродной функции для индикаторного электрода θ должна быть известна или определена заранее по градуировочному графику.

При потенциометрическом титровании измеряют и записывают ЭДС электрохимической ячейки (потенциал индикаторного электрода) после добавления каждой порции титранта. Затем по полученным результатам строят кривые титрования – интегральную в координатах E ÷ V(а) и дифференциальную в координатах ∆E /∆V ÷ V (б) , и определяют конечную точку титрования (ктт) графическим способом:

В потенциометрическом титровании используют все основные типы химических реакций – кислотно-основные, окислительно-восстановительные, осаждения и комплексообразования. К ним предъявляются те же требования, что и в визуальной титриметрии, дополненные наличием подходящего индикаторного электрода для фиксации изменения концентрации потенциалопределяющих ионов в ходе титрования.

Погрешность определения при проведении потенциометрического титрования составляет 0,5-1%, что существенно ниже, чем при прямых потенциометрических измерениях (2-10%), однако, при этом наблюдаются более высокие пределы обнаружения – больше 10 -4 моль/л.

Кулонометрия

Кулонометрия объединяет методы анализа, основанные на измерении количества электричества, затраченного на электрохимическую реакцию. Электрохимическая реакция приводит к количественному электропревращению (окислению или восстановлению) определяемого вещества на рабочем электроде (прямая кулонометрия) или к получению промежуточного реагента (титранта), который стехиометрически реагирует с определяемым веществом (косвенная кулонометрия, кулонометрическое титрование).

В основе кулонометрических методов лежит закон Фарадея , который устанавливает связь между количеством электропревращенного (окисленного или восстановленного) вещества и количеством израсходованного при этом электричества:

где m – масса электропревращенного вещества,г; Q – количество электричества, затраченного на электропревращение вещества, Кл; F – число Фарадея, равное количеству электричества, необходимого для электропревращения одного моль-эквивалента вещества, 96500 Кл/моль; М молярная масса вещества, г/моль; n – число электронов, участвующих в электрохимической реакции.

Необходимым условием проведения кулонометрического анализа является практически полное расходование электричества на превращение определяемого вещества, то есть электрохимическая реакция должна протекать без побочных процессов со 100% вы-ходом по току.

На практике кулонометрический анализ реализуется в двух вариантах – при постоянном потенциале (потенциостатическаякулонометрия ) и при постоянной силе тока(амперостатическаякулонометрия ).

Потенциостатическуюкулонометрию применяют для прямых кулонометрических измерений, когда электролизу подвергается непосредственно определяемое вещество. При этом потенциал рабочего электрода с помощью потенциостатов поддерживается постоянным и его значение выбирают на основе поляризационных кривых в области предельного тока определяемого вещества. В процессе электролиза при постоянном потенциале сила тока уменьшается в соответствии с уменьшением концентрации электроактивного вещества по экспоненциальному закону:

где Ι – сила тока в момент времени t , А; Ι 0 – сила тока в начальный момент электролиза, А; k – константа, зависящая от условий электролиза.

Электролиз ведут до достижения остаточного тока Ι , величина которого определяется требуемой точностью – для допустимой погрешности 0,1% электролиз можно считать завершенным при Ι = 0,001Ι 0 . Для сокращения времени электролиза следует применять рабочий электрод большой поверхности при интенсивном перемешивании анализируемого раствора.

Общее количество электричества Q , необходимое для электропревращения определяемого вещества, определяется уравнением:

Определить количество электричества можно измерением площади под кривой «ток – время» с помощью механических или электронных интеграторов, либо с помощью химических кулонометров. Кулонометр – это электролитическая ячейка, в которой со 100% выходом по току протекает электрохимическая реакция известной стехиометрии. Кулонометр включают последовательно с исследуемой кулонометрической ячейкой, поэтому за время электролиза через обе ячейки протекает одинаковое количество электричества. Если по окончании электролиза измерить количество (массу) образовавшегося в кулонометре вещества, то по закону Фарадея можно рассчитать количество электричества. Чаще всего применяют серебряный, медный и газовые кулонометры.

Амперостатическую кулонометрию применяют для кулонометрического титрования при постоянном токе, в процессе которого определяемое вещество реагирует с титрантом, образующимся в результате электрохимической реакции на рабочем электроде, а потому, называемый электрогенерированным титрантом .

Для обеспечения 100%-ного выхода по току необходим значительный избыток вспомогательного вещества, из которого генерируется титрант, что исключает протекание конкурирующих реакций на рабочем электроде. При этом титрант генерируется в количестве, эквивалентном определяемому веществу, и по количеству электричества, затраченного на генерацию титранта, можно рассчитать содержание определяемого вещества.

Количество электричества Q в кулонометрии при постоянной силе тока Ι рассчитывают по формуле:

где t – время электролиза, для определения которого пригодны практически все способы установления конечной точки в титриметрии (визуальные – индикаторы, инструментальные – потенциометрия, амперометрия, фотометрия). При силе тока в амперах и времени электролиза в секундах получаем количество электричества в кулонах (пример).

Пример. На кулонометрическое титрование раствора аскорбиновой кислоты иодом, генерируемым из иодида калия током силой 5,00 мА, потребовалось 8 мин 40 с. Рассчитать массу аскорбиновой кислоты в анализируемом растворе. Предложить способ фиксирования конечной точки титрования.

Решение. Количество электричества, затраченное на окисление иодида и, соответственно, аскорбиновой кислоты равно:

Q = Ι·t = 5,00∙10 -3 ∙520 = 2,60 Кл.

Аскорбиновая кислота окисляется иодом до дегидроаскорбиновой кислоты с отдачей двух электронов (С 6 Н 8 О 6 – 2е → С 6 Н 6 О 6 + 2Н +), тогда по закону Фарадея:

Конечная точка титрования определяется по появлению избытка иода в растворе. Следовательно, фиксировать ее можно визуально с помощью крахмала, добавленного в анализируемый раствор (появление синей окраски), амперометрически с ртутным капающим или платиновым микроэлектродом по появлению предельного тока иода, потенциометрически по резкому увеличению потенциала платинового электрода.

Вольтамперометрия

Вольтамперометрический метод анализа основан на использовании явления поляризации микроэлектрода, получении и интерпретации вольтамперных (поляризационных) кривых, отражающих зависимость силы тока от приложенного напряжения. Вольтамперная кривая (вольтамперограмма) позволяет одновременно получить качественную и количественную информацию о веществах, восстанавливающихся или окисляющихся на микроэлектроде (деполяризаторах), а также о характере электродного процесса. Современная вольтамперометрия – высокочувствительный и экспрессный метод определения веществ, пригодный для анализа различных объектов неорганической и органической природы, в том числе и фармацевтических препаратов. Минимально определяемая концентрация в вольтамперометрии достигает значений 10 -8 моль/л при погрешности метода менее 5%. Вольтамперометрия при оптимальных условиях эксперимента позволяет в анализируемом растворе определять несколько компонентов одновременно.

В вольтамперометрии используют два электрода – рабочий поляризуемый электрод с малой поверхностью (индикаторный микроэлектрод) и вспомогательный неполяризуемый электрод с большой поверхностью (электрод сравнения). Рабочими электродами служат микроэлектроды из ртути (ртутный капающий электрод, РКЭ), платины (ПЭ) и токопроводящих углеродных материалов (графит, стеклоуглерод).

При прохождении постоянного тока через электролитическую ячейку процесс характеризуется соотношением (закон Ома для раствора электролита):

Е = Ea – Eк + IR

Где Е – приложенное внешнее напряжение; Еа – потенциал анода; Ек – потенциал катода; I – ток в цепи; R – внутреннее сопротивление электролитической ячейки.

При вольтамперометрических измерениях анализируемый раствор содержит индифферентный (фоновый) электролит большой концентрации (в 100 раз и более превышающей концентрацию определяемого вещества – сопротивление раствора мало), а ток в вольтамперометрии не превышает 10 -5 А, поэтому падением напряжения в ячейке IR можно пренебречь.

Поскольку в вольтамперометрии один из электродов (вспомогательный) не поляризуется и для него потенциал остается постоянным (его можно принять равным нулю), подаваемое на ячейку напряжение проявляется в изменении потенциала только рабочего электрода и тогда Е = Ea для рабочего микроанода (анодная поляризация ) и Е = - для рабочего микрокатода (катодная поляризация ). Таким образом, регистрируемая вольтамперная кривая отражает электрохимический процесс, происходящий только на рабочем электроде. Если в растворе присутствуют вещества, способные электрохимически восстанавливаться или окислятся, то при наложении на ячейку линейно изменяющегося напряжения вольтамперограмма имеет форму волны 1 (в отсутствии электрохимической реакции зависимость тока от напряжения линейна 2 в соответствии с законом Ома):

Раздел вольтамперометрии, в котором рабочим микроэлектродом служит РКЭ называют полярографией , в честь чешского электрохимика Я.Гейровского, предложившего этот метод в 1922 году. Вольтамперограммы, полученные в ячейке с ртутным капающим электродом, называют полярограммами.

Для регистрации классических полярограмм ячейку с РКЭ (рабочий электрод) и насыщенным каломельным электродом (вспомогательный электрод, электрод сравнения) присоединяют к источнику постоянного напряжения и изменяют потенциал со скоростью 2-5 мВ/с.

Ртутный капающий электрод является практически идеально поляризуемым в широком диапазоне потенциалов, ограниченном в анодной области электродными реакциями окисления ртути (+0,4 В), а в катодной реакциями восстановления ионов водорода (от -1 до -1,5 Вв зависимости от кислотности среды) или катионов фона (от -2 В для катионов щелочных металлов до -2,5 В для R 4 N +). Это позволяет изучать и определять на РКЭ вещества, восстанавливающиеся при очень высоких отрицательных потенциалах, что невозможно на электродах из других материалов. Следует отметить, что здесь и далее значения потенциалов приведены относительно насыщенного каломельного электрода и при необходимости могут быть пересчитаны по отношению к другому электроду сравнения, например, насыщенному хлорсеребряному.

Перед регистрацией полярограммы на РКЭ необходимо удалить растворенный кислород, поскольку он электроактивен в отрицательной области потенциалов, давая две волны восстановления при -0,2 и -0,9 В. Сделать это можно, насыщая раствор инертным газом (азот, аргон, гелий). Из щелочных растворов кислород удаляют с помощью сульфита натрия (O 2 + 2Na 2 SO 3 → 2Na 2 SO 4).

Классическая полярограмма (полярографическая волна) в идеализированном виде представлена ниже:

Основными характеристиками полярографической волны являются величина диффузионного тока (I д, мкА), потенциал полуволны (Е 1/2 , В) – потенциал, при котором ток равен половине диффузионного, и наклон восходящего участка (0,059/n – крутизна электродной функции). Эти параметры позволяют использовать полярографию как метод анализа (сила тока пропорциональна концентрации) и исследования (потенциал полуволны и электродная функция зависят от природы вещества).

На начальном участке полярографической волны (А-Б) ток с изменением потенциала возрастает очень медленно – это так называемый остаточный ток (I ост). Основной вклад в остаточный ток вносит формирование двойного электрического слоя (ток заряжения ), который невозможно исключить и величина которого возрастает с увеличением потенциала. Вторым слагаемым остаточного тока является ток, обусловленный электроактивными примесями, который можно уменьшить применяя чистые реактивы и воду.

При достижении точки Б (потенциал выделения – при восстановлении на катоде потенциал выделения называют потенциалом восстановления Е вос, при окислении на аноде – потенциалом окисления Е ок) на электроде начинается электрохимическая реакция, в которую вступает электроактивное вещество (деполяризатор), в результате чего ток резко возрастает (участок Б-В) до некоторого предельного значения, оставаясь затем практически постоянным (участок В-Г). Ток, соответствующий этому участку называют предельным током (I пр), а разность между предельным и остаточным током составляет диффузионный ток (I д = I пр – I ост). На участке В-Г при увеличении потенциала предельный и остаточный токи незначительно возрастают, а значение диффузионного тока остается постоянным. Подъем тока в точке Г обусловлен новой электрохимической реакцией (например, восстановлением катионов фонового электролита).

Диффузионный ток получил свое название вследствие того, что в данной области потенциалов в результате электрохимической реакции в приэлектродном слое наблюдается практически полное отсутствие деполяризатора и его обогащение веществом происходит за счет диффузии деполяризатора из глубины раствора, где его концентрация остается постоянной. Поскольку скорость диффузии в данных конкретных условиях остается постоянной, то и диффузионный ток сохраняет постоянство своего значения.

Зависимость величины диффузионного тока от концентрации деполяризатора для р.к.э. выражается уравнением Ильковича:

I d = 605nD 1/2 m 2/3 t 1/6 c

где D – коэффициент диффузии электроактивного иона; n – число электронов, участвующих в реакции; m 2/3 t 1/6 – характеристика капилляра, из которого вытекает ртуть; с - концентрация определяемого вещества (деполяризатора).

При работе с одним и тем же капилляром и деполяризатором значение 605nD 1/2 m 2/3 t 1/6 = const, поэтому между высотой волны и концентрацией вещества имеется линейная зависимость

На этой линейной зависимости основан количественный полярографический анализ. Взаимосвязь между потенциалом электрода и возникающим током описывается уравнением полярографической волны (уравнение Ильковича-Гейровского):

где Е и I – соответственно потенциал и величина тока для данной точки полярографической кривой; I d - величина диффузионного тока; Е 1/2 – потенциал полуволны.

Е 1/2 - это потенциал, при котором достигается величина тока, равная половине I d . Он не зависит от концентрации деполяризатора. Е 1/2 очень близки к нормальному редокс-потенциалу системы (Ео), то есть является качественной характеристикой, определяющейся только природой восстанавливающихся ионов и по которым можно установить качественный состав анализируемого раствора.

Полярограмма (вольтамперограмма) содержит ценную аналитическую информацию – потенциал полуволны Е 1/2 является качественной характеристикой деполяризатора (качественный аналитический сигнал), в то время как диффузионный ток I д линейно связан с концентрацией определяемого вещества в объёме анализируемого раствора (количественный аналитический сигнал) – I д = .

Величина Е 1/2 может быть рассчитана из уравнения полярографической волны или определена графически:

Найденное значение Е 1/2 с учетом использованного фонового электролита позволяет на основании табличных данных идентифицировать деполяризатор. Если в анализируемом растворе находится несколько веществ, потенциалы полуволн которых различаются более чем на 0,2 В, то на полярограмме будет не одна волна, а несколько – по числу электроактивных частиц. При этом следует иметь в виду, что восстановление (окисление) многозарядных частиц может происходить ступенчато, давая несколько волн.

Для исключения перемещения вещества к электроду за счет тепловой и механической конвекции (перемешивания) измерение осуществляется в термостатированном растворе и в отсутствии перемешивания. Устранению электростатического притяжения деполяризатора полем электрода (миграции) способствует большой избыток электронеактивного фонового электролита, ионы которого экранируют заряд электрода, уменьшая движущую силу миграции практически до нуля.

При использовании ртутного капающего электрода на полярограмме наблюдаются осцилляции тока (его периодическое небольшое увеличение и уменьшение). Каждая такая осцилляция соответствует возникновению, росту и отрыву капли ртути от капилляра микроэлектрода. В полярографах предусмотрены устройства для устранения осцилляций.

Полярограммы могут быть искажены за счет полярографических максимумов – резкого возрастания тока выше его предельного значения с последующим спадом:

Появление максимумов обусловлено перемешиванием раствора в результате движения поверхности капли ртути из-за неравномерного распределения заряда, а, соответственно, и поверхностного натяжения (максимумы I рода), а также появлений завихрений при вытекании ртути из капилляра (максимумы II рода). Максимумы искажают полярограмму и затрудняют еѐ расшифровку. Для удаления максимумов I рода вводят поверхностно-активное вещество (например, агар-агар, желатин, камфару, фуксин, синтетические ПАВ), которое, адсорбируясь на поверхности ртутной капли, выравнивает поверхностное натяжение и устраняет движение поверхностных слоѐв ртути. Для удаления максимумов II рода достаточно уменьшить давление ртути в капилляре, снизив высоту ртутного столба.

Вольтамперометрия с твердыми рабочими электродами отличается от полярографии с использованием РКЭ другим диапазоном поляризации микроэлектрода. Как было показано выше, ртутный капающий электрод вследствие высокого перенапряжения водорода на нём можно использовать в области высоких отрицательных потенциалов, но из-за анодного растворения ртути при +0,4 В он не может быть применѐн для исследований в области положительных потенциалов. На графите и платине разряд ионов водорода протекает значительно легче, поэтому область их поляризации ограничена значительно более низкими отрицательными потенциалами (-0,4 и -0,1 В соответственно). В то же время в области анодных потенциалов платиновый и графитовый электроды пригодны до потенциала +1,4 В (далее начинается электрохимическая реакция окисления кислорода воды 2Н 2 О – 4е → О 2 + 4Н +), что делает их пригодными для исследований в диапазоне положительных потенциалов.

В отличие от РКЭ во время регистрации вольтамперограммы поверхность твердого микроэлектрода не возобновляется и легко загрязняется продуктами электродной реакции, что приводит к понижению воспроизводимости и точности результатов, поэтому перед регистрацией каждой вольтамперограммы следует проводить очистку поверхности микроэлектрода.

Стационарные твердые электроды не нашли широкого применения в вольтамперометрии из-за медленного установления предельного тока, что приводит к искажению формы вольтамперограммы, однако, на вращающихся микроэлектродах в приэлектродном слое возникают условия для стационарной диффузии, поэтому сила тока устанавливается быстро и вольтамперограмма имеет ту же форму, что и в случае РКЭ.

Величина предельного диффузионного тока на вращающемся дисковом электроде (не зависимо от материала) описывается уравнением конвективной диффузии (Левича):

I d = 0.62nFSD 2/3 w 1/2 n -1/6 c

где n - число электронов, участвующих в электродном процессе;

F – число Фарадея (96500 кулонов);

S - площадь электрода;

D – коэффициент диффузии деполяризатора;

w - угловая скорость вращения электрода;

n - кинематическая вязкость исследуемого раствора;

с - концентрация деполяризатора, моль/л.

При затруднениях в расшифровке полярограмм применяют метод «свидетеля» – после регистрации полярограммы анализируемого раствора, к нему в электролитическую ячейку поочередно добавляют стандартные растворы предполагаемых соединений. Если предположение было верным, то увеличивается высота волны соответствующего вещества, при неверном предположении появится дополнительная волна при другом потенциале.

Определить концентрацию деполяризатора в анализируемом растворе можно методами градуировочного графика, методом стандарта (сравнения) и методом добавок. При этом во всех случаях следует использовать стандартные растворы, состав которых максимально приближен к составу анализируемого раствора, а условия регистрации полярограмм должны быть одинаковы. Методы применимы в интервале концентраций, где строго соблюдается прямо пропорциональная зависимость диффузионного тока от концентрации деполяризатора. На практике при количественных определениях, как правило, не фиксируют величину диффузионного тока в мкА, а измеряют высоту полярографической волны h , как указано на предыдущем рисунке, которая также является линейной функцией от концентрации h = KC.

По методу градуировочного графика регистрируют полярограммы серии стандартных растворов и строят градуировочный график в координатах h ÷ C (или I д ÷ С ), по которому для найденного значения h x в анализируемом растворе находят концентрацию определяемого вещества в нѐм С х.

В методе стандарта (сравнения) в одних и тех же условиях записывают полярограммы анализируемого и стандартного растворов определяемого вещества с концентрациями С х и С ст, тогда:

При использовании метода добавок сначала записывают полярограмму анализируемого раствора объемомV x с концентрацией С х и измеряют высоту волны h x. Затем в электролитическую ячейку к анализируемому раствору добавляют определенный объѐм стандартного раствора определяемого вещества V д с концентрацией С д (предпочтительно, чтобы V x>>V д и С х<С д), записывают полярограмму раствора с концентрацией С х+д и из-меряют высоту полученной волны h х+д. Несложные преобразования позволяют по этим данным позволяют рассчитать концентрацию определяемого вещества в анализируемом растворе (пример).

Пример. При полярографировании 10,0 мл раствора никотинамида получена волна высотой 38 мм. После добавления к этому раствору 1,50 мл стандартного раствора, содержащего 2,00 мг/мл никотинамида, волна увеличилась до 80,5 мм. Рассчитать содержание препарата (мг/мл) в анализируемом растворе.

Решение. Высота волны никотинамида в анализируемом растворе h x в соответствии с уравнением Ильковича равна:

а после добавки стандартного раствора (h х+д):

Если первое уравнение почленно разделить на второе, то получим:

Решая уравнение относительно С х и подставив значения величин из условия задачи.

Электрохимические методы анализа основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и поддающийся правильному измерению, может служить аналитическим сигналом.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения концентриции.

Применение в анализе пищевых продуктов нашли потенциометрия, кондуктометрия и вольтамперометрия.

Потенциометрический метод анализа

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации ионов в растворе. В Данном методе активно используется уравнение Нернста:

Е = Е° + R*T/(n*F) ln (а окис /а восст)

Где Е° - стандартный потенциал редокссистемы; R - универсальная газовая постоянная; Т - абсолютная температура; F- постоянная Фарадея; n - число электронов, принимающих участие в электродной реакции; а окис, а восст - активности соответственно окисленной и восстановленной форм редокс-системы.

Основными достоинствами потенциометрического метода являются его высокая точность, высокая чувствительность и возможность проводить титрования в более разбавленных растворах, чем это позволяют визуальные индикаторные методы. Необходимо отметить также возможности определения этим методом нескольких веществ в одном растворе без предварительного разделения и титрования в мутных и окрашенных средах.

Данный метод дает возможность проводить анализ пищевых продуктов на:

· наличие нитритов и нитратов в мясных продуктах;

· определение кислотности молочных продуктов, пива, ячменя и других зерновых культур;

· измерение рН сиропов;

· определение калия в молоке;

· определение крахмала в колбасных изделиях.

Кондуктометрический метод анализа

Кондуктометрический метод основан на изменении электрической проводимости растворов в зависимости от концентрации присутствующих заряженных частиц.

Объекты такого анализа - растворы электролитов.

Основные достоинства кондуктометрии:

высокая чувствительность (ниж. граница определяемых концентраций ~10 -4 -10 -5 М),достаточно высокая точность (относительная погрешность определения 0,1-2%), простота методик, доступность аппаратуры, возможность исследования окрашенных и мутных р-ров, а также автоматизации анализа.

Кондуктометрический метод анализа дает возможность определить:

· сульфаты в растворе,

· определение лимонной кислоты в плодово-ягодном сырье;

· золу в сахаре и мелассе.

Амперометрический метод анализа(Вольтамперометрия)

Вольтамперометрия - группа методов, основанных на процессах электрохимического окисления или восстановления определяемого вещества, протекающих на микроэлектроде и обуславливающих возникновении диффузного тока. Методы основаны на изучении вольтамперных кривых, отражающих зависимость силы тока от приложенного напряжения. Вольтамперограммы позволяют одновременно получить информацию о качественном и количественном составе анализируемого раствора, а также о характере электродного процесса.

Для проведения вольтамперного анализа к системе электродов прикладывают напряжение от внешнего источника. Изменяя напряжение, изучают зависимость силу диффузионного тока от приложенной разности потенциалов, которая описывается вольамперограммой.

График имеет форму волны и состоит из 3 участков. Участок I - от начала регистрации аналитического сигнала до начала электрохимической реакции, через ячейку проходит ток. Участок II - резкое увеличение тока за счет электрохимической реакции. Участок III - диффузионный ток, достигнув предельного значения, остается практически постоянным, электрохимическая реакция завершена.

Данным методом можно провести следующие анализы пищевых продуктов, которые определят:

· амилозу в крахмале;

· тяжелые металлы в молочных продуктах;

· аскорбиновую кислоту в напитках и соках.

Введение

Применение электрохимических методов в количественном анализе базируется на использовании зависимостей величин измеряемых параметров электрохимических процессов (разности электрических потенциалов, тока, количества электричества) от содержания определяемого вещества в анализируемом растворе, участвующего в данном электрохимическом процессе. Электрохимические процессы - процессы, которые сопровождаются одновременным протеканием химических реакций и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором, в который погружены электроды.

Классификация электрохимических методов анализа

Электрохимические методы анализа классифицируют по-разному. . Классификация, основанная на учете природы источника электрической энергии в системе. Различают две группы методов. -Методы без наложения внешнего (постороннего) потенциала. Источником электрической энергии служит сама электрохимическая система, представляющая собой гальванический элемент (гальваническую цепь). К таким методам относятся потенциометрические методы; электродвижущая сила (ЭДС) и электродные потенциалы в такой системе зависят от содержания определяемого вещества в растворе. - Методы с наложением внешнего (постороннего) потенциала. К таким методам относятся:

о кондуктометрический анализ - основан на измерении электрической проводимости растворов как функции их концентрации;

о вольтамперометрический анализ - основан на измерении тока как функции приложенной известной разности потенциалов и концентрации раствора;

о кулонометрический анализ - основан на измерении количества электричества, прошедшего через раствор, как функции его концентрации;

о электрогравиметрический анализ - основан на измерении массы продукта электрохимической реакции.

Классификация по способу применения электрохимических методов. Различают прямые и косвенные методы.

- Прямые методы. Измеряют электрохимический параметр как известную функцию концентрации раствора и по показанию соответствующего измерительного прибора находят содержание определяемого вещества в растворе.

- Косвенные методы. Методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы.

В соответствии с данной классификацией различают, например, прямую кондуктометрию и кондуктометрическое титрование, прямую потенциометрию и потенциометрическое титрование и т.д.

В данном пособии приведены лабораторные работы только по следующим электрохимическим методам:

Прямой потенциометрией;

Потенциометрическому титрованию;

Кулонометрическому титрованию.

Все эти методы - фармакопейные и применяются для контроля качества лекарственных средств.

Общая характеристика потенциометрического анализа

Принцип метода

Потенциометрический анализ (потенциометрия) основан на измерении ЭДС и электродных потенциалов как функции концентрации анализируемого раствора.

Если в электрохимической системе - в гальваническом элементе - на электродах протекает реакция:

с переносом n электронов, то уравнение Нернста для ЭДС E этой реакции имеет вид:

где- стандартная ЭДС реакции (разность стандартных электродных потенциалов); R - универсальная газовая постоянная; T - абсолютная температура, при которой протекает реакция; F - число Фарадея;-

активности реагентов - участников реакции.

Уравнение (1) справедливо для ЭДС обратимо работающего гальванического элемента.

Для комнатной температуры уравнение (1) можно представить в форме:


(2)

В условиях, когда активность реагентов приблизительно равна их концентрации, уравнение (1) переходит в уравнение (3):


(3)

где - концентрации реагентов.

Для комнатной температуры это уравнение можно представить в виде:


(4)

При потенциометрических измерениях в электрохимической ячейке используют два электрода:

. индикаторный электрод, потенциал которого зависит от концентрации определяемого (потенциалопределяющего) вещества в анализируемом растворе;

. электрод сравнения, потенциал которого в условиях проведения анализа остается постоянным.

Именно поэтому величину ЭДС, определяемую уравнениями (14), можно рассчитать как разность реальных потенциалов этих двух электродов.

В потенциометрии используют электроды следующих типов: электроды первого, второго рода, окислительно-восстановительные, мембранные.

Электроды первого рода. Это электроды, обратимые по катиону, общему с материалом электрода. Различают три разновидности электродов первого рода:

а) Металл M, погруженный в раствор соли того же металла. На поверхности таких электродов протекает обратимая реакция:

Реальный потенциал такого электрода первого рода зависит от активностикатионов металла и описывается уравнениями (5-8). В общем случае для любой температуры:


(5)

Для комнатной температуры:


(6)

При малых концентрациях , когда активность катионов

металла приблизительно равна их концентрации,


(7)

Для комнатной температуры:


(8)

б) Газовые электроды, например, водородный электрод, в том числе и стандартный водородный электрод. Потенциал обратимо работающего газового водородного электрода определяется активностью ионов водорода, т.е. величиной рН раствора, и при комнатной температуре равен:

поскольку для водородного электрода стандартный потенциал принимается равным нулю , а в соответствии с электродной реакцией

число электронов, участвующих в этой реакции, равно единице: n = 1;

в) Амальгамные электроды, представляющие собой амальгаму металла, погруженную в раствор, содержащий катионы того же металла. Потен-

циал таких электродов первого рода зависит от активностика-

тионов металла в растворе и активности a(M) металла в амальгаме:


Амальгамные электроды обладают высокой обратимостью. Электроды второго рода обратимы по аниону. Различают следующие виды электродов второго рода:

А. Металл, поверхность которого покрыта малорастворимой солью этого же металла, погруженный в раствор, содержащий анионы, входящие в состав этой малорастворимой соли. Примером могут служить хлорсеребряный электрод , или каломельный электрод ,

Хлорсеребряный электрод состоит из серебряной проволоки, покрытой малорастворимой в воде солью , погруженной в водный раствор хлорида калия. На хлорсеребряном электроде протекает обратимая реакция:

Каломельный электрод состоит из металлической ртути, покрытой пастой малорастворимого хлорида ртути(I)- каломели, контак-

тирующей с водным раствором хлорида калия. На каломельном электроде протекает обратимая реакция:


Реальный потенциал электродов второго рода зависит от активности анионов и для обратимо работающего электрода, на котором протекает реакция


описывается уравнениями Нернста (9-12).

В общем случае при любой приемлемой температуре T:


. (9)

Для комнатной температуры:

Для условий, в которых активность анионов приблизительно равна их концентрации:

. (11)

Для комнатной температуры:


(12)

Например, реальные потенциалыисоответственно хлорсеребряного и каломельного электродов при комнатной температуре можно представить в виде:


В последнем случае в электродной реакции участвуют 2 электрона (n = 2) и образуются также 2 хлорид-иона, поэтому множитель при логарифме равен также 0,059.

Электроды второго рода рассмотренного вида обладают высокой обратимостью и стабильны в работе, поэтому их часто используют в качестве электродов сравнения, способных устойчиво поддерживать постоянное значение потенциала;

б) газовые электроды второго рода, например, хлорный электрод , Газовые электроды второго рода в количественном потен-

циометрическом анализе применяются редко.

Окислительно-восстановительные электроды. Состоят из инертного материала (платины, золота, вольфрама, титана, графита и др.), погруженного в раствор, содержащий окисленную Ox и восстановленную Red формы данного вещества. Существуют две разновидности окислительновосстановительных электродов:

1) электроды, потенциал которых не зависит от активности ионов водорода, например и т.д.;

2) электроды, потенциал которых зависит от активности ионов водорода, например, хингидронный электрод.

На окислительно-восстановительном электроде, потенциал которого не зависит от активности ионов водорода, протекает обратимая реакция:

Реальный потенциал такого окислительно-восстановительного электрода зависит от активности окисленной и восстановленной формы данного вещества и для обратимо работающего электрода описывается, в зависимости от условий (по аналогии с вышерассмотренными потенциалами), уравнениями Нернста (13-16):

(13) (14) (15) (16)

где все обозначения - традиционные.

Если в электродной реакции участвуют ионы водорода, то их активность (концентрацию) учитывают в соответствующих уравнениях Нернста для каждого конкретного случая.

Мембранные, или ион-селективные, электроды - электроды, обратимые по тем или иным ионам (катионам или анионам), сорбируемым твердой или жидкой мембраной. Реальный потенциал таких электродов зависит от активности тех ионов в растворе, которые сорбируются мембраной.

Мембранные электроды с твердой мембраной содержат очень тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией: раствор (стандартный) с точно известной концентрацией определяемых ионов и анализируемый раствор с неизвестной концентрацией определяемых ионов. Вследствие различной концентрации ионов в обоих растворах ионы на разных сторонах мембраны сорбируются в неодинаковых количествах, неодинаков и возникающий при сорбции ионов электрический заряд на разных сторонах мембраны. Как результат возникает мембранная разность потенциалов.

Определение ионов с применением мембранных ион-селективных электродов называют ионометрией.

Как уже говорилось выше, при потенциометрических измерениях электрохимическая ячейка включает два электрода - индикаторный

и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих двух электродов. Поскольку потенциал электрода сравнения в условиях проведения потенциометрического определения остается постоянным, ЭДС зависит только от потенциала индикаторного электрода, т.е. от активности (концентрации) тех или иных ионов в растворе. На этом и основано потенциометрическое определение концентрации данного вещества в анализируемом растворе.

Для потенциометрического определения концентрации вещества в растворе применяют как прямую потенциометрию, так и потенциометрическое титрование, хотя второй способ используют намного чаще первого.

Прямая потенциометрия

Определение концентрации вещества в прямой потенциометрии. Проводят обычно методом градуировочного графика или методом добавок стандарта.

. Метод градуировочного графика. Готовят серию из 5-7 эталонных растворов с известным содержанием определяемого вещества. Концентрация определяемого вещества и ионная сила в эталонных растворах не должны сильно отличаться от концентрации и ионной силы анализируемого раствора: в этих условиях уменьшаются ошибки определения. Ионную силу всех растворов поддерживают постоянной введением индифферентного электролита. Эталонные растворы последовательно вносят в электрохимическую (потенциометрическую) ячейку. Обычно эта ячейка представляет собой стеклянный химический стакан, в который помещают индикаторный электрод и электрод сравнения.

Измеряют ЭДС эталонных растворов, тщательно промывая дистиллированной водой электроды и стакан перед заполнением ячейки каждым эталонным раствором. По полученным данным строят градуировочный график в координатахгде с - концентрация определяемо-

го вещества в эталонном растворе. Обычно такой график представляет собой прямую линию.

Затем в электрохимическую ячейку вносят (после промывания ячейки дистиллированной водой) анализируемый раствор и измеряют ЭДС ячейки. По градуировочному графику находят, где - концентрация определяемого вещества в анализируемом растворе.

. Метод добавок стандарта. В электрохимическую ячейку вносят известный объем V(X) анализируемого раствора с концентрацией и измеряют ЭДС ячейки. Затем в тот же раствор прибавляют точно измеренный небольшой объем стандартного раствора с известной, до-

статочно большой концентрацией определяемого вещества и снова определяют ЭДС ячейки.

Рассчитывают концентрацию определяемого вещества в анализируемом растворе по формуле (17):

(17)

где - разность двух измеренных значений ЭДС;- число электронов, участвующих в электродной реакции.

Применение прямой потенциометрии. Метод применяется для определения концентрации ионов водорода (рН растворов), анионов, ионов металлов (ионометрия).

Большую роль при использовании прямой потенциометрии играет выбор подходящего индикаторного электрода и точное измерение равновесного потенциала.

При определении рН растворов в качестве индикаторных используют электроды, потенциал которых зависит от концентрации ионов водорода: стеклянный, водородный, хингидронный и некоторые другие. Чаще применяют мембранный стеклянный электрод, обратимый по ионам водорода. Потенциал такого стеклянного электрода определяется концентрацией ионов водорода, поэтому ЭДС цепи, включающей стеклянный электрод в качестве индикаторного, описывается при комнатной температуре уравнением:

где постоянная K зависит от материала мембраны, природы электрода сравнения.

Стеклянный электрод позволяет определять рН в интервале рН 0-10 (чаще в диапазоне рН 2-10) и обладает высокой обратимостью и стабильностью в работе.

Хингидронный электрод, часто применявшийся ранее, - окислительно-восстановительный электрод, потенциал которого зависит от концентрации ионов водорода. Он представляет собой платиновую проволоку, погруженную в раствор кислоты (обычно НС1), насыщенный хингидроном - эквимолекулярным соединением хинона с гидрохиноном состава (темно-зеленый порошок, малорастворимый в воде). Схематическое обозначение хингидронного электрода:

На хингидронном электроде протекает окислительно-восстановительная реакция:

Потенциал хингидронного электрода при комнатной температуре описывается формулой:

Хингидронный электрод позволяет измерять рН растворов в интервале рН 0-8,5. При рН < 0 хингидрон гидролитически расщепляется; при рН >8,5 гидрохинон, являющийся слабой кислотой, вступает в реакцию нейтрализации.

Хингидронный электрод нельзя применять в присутствии сильных окислителей и восстановителей.

Мембранные ион-селективные электроды используют в ионометрии в качестве индикаторных для определения различных катионов

И др.) и анионов,

и др.).

К достоинствам прямой потенциометрии относятся простота и быстрота проведения измерений. Для измерений требуются небольшие объемы растворов.

Потенциометрическое титрование

Потенциометрическое титрование - способ определения объема титранта, затраченного на титрование определяемого вещества в анализируемом растворе, путем измерения ЭДС (в процессе титрования) с помощью гальванической цепи, составленной из индикаторного электрода и электрода сравнения. При потенциометрическом титровании анализируемый раствор, находящийся в электрохимической ячейке, титруют подходящим титрантом, фиксируя конец титрования по резкому изменению ЭДС измеряемой цепи - потенциала индикаторного электрода, который зависит от концентрации соответствующих ионов и резко изменяется в точке эквивалентности.

Измеряют изменение потенциала индикаторного электрода в процессе титрования в зависимости от объема прибавленного титранта. По полученным данным строят кривую потенциометрического титрования и по этой кривой определяют объем израсходованного титранта в ТЭ.

При потенциометрическом титровании не требуется использование индикаторов, изменяющих окраску вблизи ТЭ.

Электродную пару (электрод сравнения и индикаторный электрод) составляют так, чтобы потенциал индикаторного электрода зависел от концентрации ионов, участвующих или образующихся в реакции, протекающей при титровании. Потенциал электрода сравнения во время титрования должен оставаться постоянным. Оба электрода устанавливают непосредственно в электрохимической ячейке или же помещают в отдельные сосуды с токопроводящими растворами (индикаторный электрод - в анализируемый раствор), которые соединяют электролитическим мостиком, заполненным индифферентным электролитом.

Титрант прибавляют равными порциями, каждый раз измеряя разность потенциалов. В конце титрования (вблизи ТЭ) титрант прибавляют по каплям, также измеряя разность потенциалов после прибавления очередной порции титранта.

Разность потенциалов между электродами измеряют, используя высокоомные потенциометры.

Кривые потенциометрического титрования

Кривая потенциометрического титрования - графическое изображение изменения ЭДС электрохимической ячейки в зависимости от объема прибавленного титранта.

Кривые потенциометрического титрования строят в различных координатах:

Кривые титрования в координатах , иногда такие кривые называют интегральными кривыми титрования;

Дифференциальные кривые титрования - в координатах

Кривые титрования по методу Грана - в координатах

где- ЭДС потенциометрической ячейки,- объем прибавленно-

го титранта, - изменение потенциала, соответствующее прибавлению титранта.

На рис. 3-8 приведены схематически различные типы кривых потенциометрического титрования.

По построенным кривым титрования определяют объем титранта

в ТЭ, как это показано на рис. 3-8. Объем титранта прибавленного в ТЭ, можно определить

не только графически, но и расчетным путем по формуле (18):

где- объем прибавленного титранта, соответствующий последнему измерению до ТЭ;- объем прибавленного титранта, соответствующий первому измерению после ТЭ;



Рис. 3-8. Типы кривых потенциометрического титрования (Е - измеряемая ЭДС, - объем прибавленного титранта, - объем титранта, при-

бавленного в точке эквивалентности): а - кривая титрования в координатах ; б, в - дифференциальные кривые титрования; г - кривая титрования по методу Грана

В таблице 3-9 в качестве примера (фармакопейного) приведены результаты определений и расчетов при потенциометрическом титровании.

Рассчитаем по формуле (18) величину V (ТЭ) с использованием данных табл. 3-9. Очевидно, что максимальное значение= 1000. Следовательно,= 5,20 и= 5,30;= 720, .= -450. Отсюда:

Таблица 3-9. Пример обработки результатов потенциометрического титрования


Применение потенциометрического титрования. Метод - универсальный, его можно применять для индикации конца титрования во всех типах титрования: кислотно-основном, окислительновосстановительном, комплексиметрическом, осадительном, при титровании в неводных средах. В качестве индикаторных используют стеклянный, ртутный, ион-селективные, платиновый, серебряный электроды, а в качестве электродов сравнения - каломельный, хлорсеребряный, стеклянный.

Метод обладает высокой точностью, большой чувствительностью; позволяет проводить титрование в мутных, окрашенных, неводных средах, раздельно определять компоненты смеси в одном анализируемом растворе, например, раздельно определять хлорид- и иодид-ионы при аргентометрическом титровании.

Методами потенциометрического титрования анализируют многие лекарственные вещества, например, аскорбиновую кислоту, сульфамидные препараты, барбитураты, алкалоиды и др.

Задание для самоподготовки к лабораторным занятиям по теме «Потенциометрический анализ»

Цель изучения темы

На основе знания теории потенциометрического анализа и выработки практических умений научиться обоснованно выбирать и практически применять методы прямой потенциометрии и потенциометрического титрования для количественного определения вещества; уметь проводить статистическую оценку результатов потенциометрического анализа.

Целевые задачи

1. Научиться проводить количественное определение содержания фторид-иона в растворе методом прямой потенциометрии с применением фторид-селективного электрода.

2. Научиться проводить количественное определение массовой доли новокаина в препарате методом потенциометрического титрования.

На изучение темы отводятся два лабораторных занятия. На одном занятии студенты выполняют первую лабораторную работу и решают типовые расчетные задачи по основным разделам потенциометрического анализа; на другом занятии студенты выполняют вторую лабораторную работу. Последовательность проведения занятий особого значения не имеет.

Список литературы

1.Учебник. - Книга 2, глава 10. - С. 447-457; 493-507; 510-511.

2.Харитонов Ю.Я. Григорьева В.Ю. Примеры и задачи по аналитической химии.- М.: ГЭОТАР-Медиа, 2007. - С. 214-225; 245-259; 264-271.

3.Лекции по теме: «Потенциометрический анализ».

4.Ефременко О.А. Потенциометрический анализ.- М.: ММА им. И.М. Сеченова, 1998.

К занятию необходимо знать

1. Принцип методов потенциометрического анализа. Уравнение Нернста.

2. Разновидности методов потенциометрического анализа.

3. Схему установки для прямой потенциометрии.

4. Индикаторные электроды и электроды сравнения, применяемые в прямой потенциометрии.

5. Сущность определения концентрации вещества методом прямой потенциометрии с помощью градуировочного графика.

6. Сущность определения содержания фторид-иона в растворе методом прямой потенциометрии с применением фторидселективного электрода.

К занятию необходимо уметь

1. Рассчитывать массу навески для приготовления стандартного раствора вещества.

2. Готовить стандартные растворы методом разбавления.

3. Строить градуировочные графики и использовать их для количественного определения вещества.

Вопросы для самопроверки

1. Какой принцип лежит в основе метода прямой потенциометрии?

3. Какой электрохимический параметр измеряют при определении вещества методом прямой потенциометрии?

4. Приведите схему установки для определения вещества методом прямой потенциометрии.

5. Какие электроды называют индикаторными? Назовите наиболее употребительные индикаторные ион-селективные электроды.

6. Какие электроды называют электродами сравнения? Какой электрод сравнения принят в качестве международного стандарта? Как он устроен? Назовите наиболее часто применяемые электроды сравнения. Как устроены:

а) насыщенный каломельный электрод;

б) насыщенный хлорсеребряный электрод?

7. В чем сущность потенциометрического определения вещества методом градуировочного графика?

8. Назовите диапазон определяемых концентраций и процентную (относительную) погрешность определения вещества методом прямой потенциометрии.

9. Какой принцип лежит в основе определения фторид-иона методом прямой потенциометрии? Перечислите основные этапы анализа.

Лабораторная работа «Определение содержания фторид-иона в растворе с применением фторидселективного электрода»

Цель работы

Научиться применять метод прямой потенциометрии с использованием ион-селективного электрода для количественного определения вещества методом градуировочного графика.

Целевые задачи

1. Приготовление стандартного раствора натрия фторида, концентрация которого точно равна заданной.

2. Приготовление методом разбавления серии стандартных растворов натрия фторида, по составу и ионной силе близких к анализируемому раствору.

3. Измерение электродвижущей силы (ЭДС) гальванического элемента, составленного из индикаторного фторид-селективного электрода и хлорсеребряного электрода сравнения, как функции концентрации фторид-иона.

4. Построение градуировочного графика в координатах: «ЭДС - показатель концентрации фторид-иона».

5. Определение содержания фторид-иона в анализируемом растворе с помощью градуировочного графика.

Материальное обеспечение

Реактивы

1. Натрия фторид, х.ч.

2. Раствор буферный ацетатный, рН ~6.

3. Вода дистиллированная. Лабораторная посуда

1. Колба мерная на 100 мл - 1 шт.

2. Колба мерная на 50 мл - 6 шт.

3. Пипетка мерная на 5 мл - 1 шт.

4. Стакан химический на 200-250 мл - 1 шт.

5. Стакан химический на 50 мл - 2 шт.

6. Бюкс - 1 шт.

7. Воронка - 1 шт.

8. Палочка стек лянная - 1 шт.

9. Промывалка на 250 или 500 мл - 1 шт.

Приборы

2. Электрод индикаторный, фторид-селективный. Перед эксплуатацией фторидный электрод выдерживают в 0,01 моль/л растворе натрия фторида в течение 1-2 ч.

3. Электрод сравнения, вспомогательный лабораторный хлорсеребряный ЭВЛ-IМЗ или аналогичный. Перед эксплуатацией хлорсеребряный электрод наполняют через боковое отверстие концентрированным, но ненасыщенным, примерно 3 моль/л, раствором калия хлорида. При применении насыщенного раствора калия хлорида возможна кристаллизация соли непосредственно вблизи контактной зоны электрода с измеряемым раствором, что препятствует прохождению тока и приводит к невоспроизводимым показаниям измерительного прибора. После заполнения электрода 3 моль/л раствором калия хлорида боковое отверстие закрывают резиновой пробкой, электрод погружают в раствор калия хлорида той же концентрации и выдерживают в этом растворе в течение ~48 ч. В процессе работы пробка из бокового отверстия электрода должна быть удалена. Скорость истечения раствора калия хлорида через электролитический ключ электрода при температуре 20±5 °C составляет 0,3-3,5 мл/сут.

4. Штатив для закрепления двух электродов.

5. Мешалка магнитная.

Прочие материалы

1. Полоски фильтровальной бумаги 3 5 см.

2. Бумага миллиметровая 912 см.

3. Линейка.

Сущность работы

Определение фторид-иона методом прямой потенциометрии основано на измерении электродвижущей силы гальванического элемента, в котором индикаторным электродом служит фторид-селективный электрод, а электродом сравнения - хлорсеребряный или каломельный, как функции концентрации фторид-ионов в растворе.

Чувствительной частью фторидного электрода (рис. 3-9) является мембрана из монокристалла лантана(III) фторида, активированного европием(II).

Рис. 3-9. Схема устройства фторид-селективного электрода: 1 - мембрана из монокристалла2 - внутренний полуэлемент (обычно хлорсеребря-

ный); 3 - внутренний раствор с постоянной активностью ионов (0,01 моль/л имоль/л); 4 - корпус электрода; 5 - провод для подключения электрода к измерительному прибору

Равновесный потенциал фторидного электрода в соответствии с уравнением Нернста для анион-селективных электродов зависит от активности (концентрации) фторид-иона в растворе:


(19) или при 25 °C:

(20)

где- стандартный потенциал фторидного электрода, В;-

соответственно активность, коэффициент активности, молярная концентрация фторид-иона в растворе.

Первый член правой части уравнения (20)- величина постоянная. Для растворов с примерно одинаковой ионной силой коэффициент активности фторид-иона, а следовательно, и второй член правой части уравнения (20) также является постоянной величиной. Тогда уравнение Нернста можно представить в виде:

Е = const - 0,0591gc (F -) = const + 0,059pF, (21)

где pF = -1gc(F -) - показатель концентрации фторид-иона в растворе.

Таким образом, при постоянной ионной силе растворов равновесный потенциал фторидного электрода находится в линейной зависимости от показателя концентрации фторид-иона. Существование такой зависимости позволяет проводить определение концентрации фторид-иона с помощью градуировочного графика, который строят в координатах для серии стандартных растворов натрия фторида, по составу и ионной силе близких анализируемому раствору.

Фторидный электрод применяют в диапазоне значений рН 5-9, так как при рН < 5 наблюдается неполная ионизация или образование а при рН > 9 - взаимодействие материала электрода с гидроксидионом:

Для поддержания постоянного значения рН и создания в стандартных и анализируемых растворах постоянной ионной силы обычно используют буферный раствор (например, ацетатный или цитратный). При анализе растворов со сложным солевым составом буферный раствор служит также для устранения мешающего влияния посторонних катионов путем связывания их в устойчивые ацетатные, цитратные или другие комплексные соединения. С этой же целью в буферный раствор вводят дополнительные комплексообразующие реагенты (например, ЭДТА).

Селективность определения с помощью фторидного электрода очень высокая; мешают только гидроксид-ионы и те немногие катионы, которые образуют с фторид-ионом более устойчивые комплексные соединения, чем с компонентами буферного раствора

Диапазон определяемых концентраций фторид-иона очень широкий: от 10 -6 до 1 моль/л; при этом процентная погрешность определения составляет ±2%.

Фторид-селективный электрод широко применяется в анализе разнообразных объектов: питьевой воды, фармацевтических препаратов, биологических материалов, при контроле за загрязнением окружающей среды и т.д.

Поскольку в настоящей работе анализируют растворы натрия фторида, не содержащие посторонних ионов, буферный раствор можно не применять. В таком случае следует ожидать небольшого отклонения градуировочного графика от линейной зависимости, так как в стандартных растворах с увеличением концентрации фторид-иона увеличивается ионная сила, и коэффициент активности фторид-иона не сохраняется постоянным.

Порядок выполнения работы

1. (см. приложение 1).

2. Знакомство с назначением, принципом работы и «Инструкцией по эксплуатации универсального иономера ЭВ-74» (или аналогичного прибора) (см. приложения 2, 3).

3.

ВНИМАНИЕ! В данной работе предусмотрено использование иономера типа ЭВ-74. При использовании приборов другого типа необходимо давать дополнительно их описание.

3.1. Собирают гальванический элемент из индикаторного фторидселективного электрода и хлорсеребряного электрода сравнения.

ВНИМАНИЕ! При работе с ион-селективными электродами необходимо соблюдать осторожность, чтобы не повредить рабочей поверхности электрода - мембраны, которая должна быть гладкой, без царапин и отложений.

Перед установкой фторидный электрод энергично встряхивают, как медицинский термометр, держа его в вертикальном положении мембраной вниз. Это делают для того, чтобы удалить невидимые снаружи пузырьки воздуха, которые могут образовываться между поверхностью мембраны и внутренним раствором электрода (см. рис. 3-9) и приводить к нестабильности показаний измерительного прибора.

Фторидный электрод закрепляют в штативе рядом с электродом сравнения.

ВНИМАНИЕ! Держатели, предназначенные для закрепления в штативе электродов, обычно заранее установлены надлежащим образом; не рекомендуется изменять их положение. Для того чтобы закрепить фторидный электрод или поменять раствор в ячейке, следует сначала осторожно убрать из-под ячейки магнитную мешалку.

При закреплении фторидный электрод подводят в лапку штатива снизу так, чтобы его нижний конец оказался на одном уровне с нижним концом электрода сравнения. Электрод подключают к иономеру через гнездо «Изм.», находящееся на задней панели прибора (приложение 3, п. 1.1). Электрод сравнения должен быть подключен к иономеру через гнездо «Всп.».

Электроды многократно промывают дистиллированной водой из промывалки над стаканом вместимостью 200-250 мл, после чего под электроды подводят стакан вместимостью 50 мл с дистиллированной водой, который устанавливают в центре столика магнитной мешалки. Правильно закрепленные электроды не должны касаться стенок и дна

стакана, а также магнитного стержня, применяемого в дальнейшем для перемешивания раствора.

3.2. Иономер включают в сеть под наблюдением преподавателя, руководствуясь инструкцией по эксплуатации прибора (приложение 3, п.п. 1.2-1.7). Дают прибору прогреться в течение 30 мин.

4. Приготовление стандартного 0,1000 моль/л раствора натрия фторида. Рассчитывают с точностью до 0,0001 г массу навески натрия фторида, требуемую для приготовления 100 мл 0,1000 моль/л раствора по формуле:

где с,- соответственно молярная концентрация (моль/л) и объем (л) стандартного раствора натрия фторида;- молярная масса натрия фторида, г/моль.

На аналитических весах с точностью до ±0,0002 г взвешивают сначала чистый и сухой бюкс, а затем в этом бюксе взвешивают навеску х.ч. натрия фторида, масса которого должна быть точно вычисленной.

Взятую навеску количественно переносят в мерную колбу вместимостью 100 мл через сухую воронку, смывая частицы соли со стенок бюкса и воронки ацетатным буферным раствором (рН ~6). Раствор из бюкса сливают в колбу по стеклянной палочке, прислонив ее к краю бюкса. Добиваются полного растворения соли, после чего буферным раствором доводят объем раствора до метки колбы. Содержимое колбы перемешивают.

5. Приготовление серии стандартных растворов натрия фторида с постоянной ионной силой. Серию стандартных растворов с концентрацией фторид-иона, равной 10 -2 , 10 -3 , 10 -4 , 10 -5 и 10 -6 моль/л, готовят в мерных колбах вместимостью 50 мл из стандартного 0,1000 моль/л раствора натрия фторида путем последовательного разбавления буферным раствором.

Так, для приготовления 10 -2 моль/л раствора в мерную колбу на 50 мл помещают пипеткой 5 мл 0,1000 моль/л раствора натрия фторида, предварительно ополоснув пипетку небольшим количеством этого раствора 2-3 раза, буферным раствором доводят объем раствора до метки, содержимое колбы перемешивают. Таким же способом из 10 -2 моль/л раствора готовят 10 -3 моль/л раствор и т.д. вплоть до 10 -6 моль/л раствора натрия фторида.

6. Измерение электродвижущей силы гальванического элемента как функции концентрации фторид-иона. В стакан вместимостью 50 мл последовательно помещают приготовленные стандартные растворы на-

трия фторида, начиная с самого разбавленного, предварительно ополоснув стакан измеряемым раствором 2-3 раза. Осторожно осушают поверхность фторидного и хлорсеребряного электродов фильтровальной бумагой, после чего электроды погружают в измеряемый раствор, опускают магнитный стержень и устанавливают ячейку в центре столика магнитной мешалки. Если на то будет указание преподавателя, открывают боковое отверстие хлорсеребряного электрода, удалив из него резиновую пробку. Включают магнитную мешалку и измеряют ЭДС элемента (положительный потенциал фторидного электрода) с помощью иономера ЭВ-74 на узком диапазоне измерений - 14 так, как указано в Приложении 3, п.п. 2.1-2.5. Результаты измерений заносят в табл. 3-10.

Таблица 3-10. Результаты измерения электродвижущей силы гальванического элемента как функции концентрации фторид-иона

7. Построение градуировочного графика. По данным табл. 3-10 на миллиметровой бумаге строят градуировочный график, откладывая по оси абсцисс показатель концентрации фторид-иона а по оси ординат - ЭДС элемента в милливольтах (Е, мВ). Если выполняется зависимость (21), то получается прямая, тангенс угла наклона которой к оси абсцисс составляет 59±2 мВ (при 25 °C). График подклеивают в лабораторный журнал.

8. Определение содержания фторид-иона в анализируемом растворе с помощью градуировочного графика. Анализируемый раствор, содержащий фторид-ион, получают от преподавателя в мерной колбе на 50 мл. Объем раствора доводят до метки ацетатным буферным раствором. Содержимое колбы перемешивают и в полученном растворе измеряют ЭДС элемента, составленного из фторидного и хлорсеребряного электродов.

По окончании измерений закрывают отверстие хлорсеребряного электрода резиновой пробкой и выключают прибор, как указано в Приложении 3, п. 2.6.

По градуировочному графику находят показатель концентрации фторид-иона, соответствующий ЭДС элемента в анализируемом растворе, затем определяют молярную концентрацию и рассчитывают содержание фторид-иона в растворе по формуле:


где - титр фторид-иона в анализируемом растворе, г/мл; - моляр-

ная концентрация фторид-иона, найденная с помощью градуировочного графика, моль/л; - молярная масса фторид-иона, г/моль.

Расчет титра проводят с точностью до трех значащих цифр.

9. Определение содержания фторид-иона в анализируемом растворе по уравнению градуировочного графика. Значение рF для анализируемого раствора можно найти по уравнению градуировочного графика, что представляется более точным, чем с помощью градуировочного графика. Это уравнение имеет вид:

где цепи с испытуемым раствором;цепи при = 0 -

отрезок, отсекаемый прямой по оси ординат;- тангенс угла

наклона прямой к оси абсцисс:

где n - количество эталонных растворов. Таким образом:

Определив по графикуи рассчитав рассчитывают

по формуле:

Затем определяют молярную концентрацию и рассчитывают содержание фторид-иона в растворе по формуле, указанной выше.

Контрольные вопросы

1. Назовите составные части гальванического элемента, служащего для определения концентрации (активности) фторид-иона в растворе методом прямой потенциометрии.

2. Какая математическая зависимость лежит в основе определения концентрации (активности) фторид-иона в растворе методом прямой потенциометрии?

3. Опишите устройство фторид-селективного электрода. От каких факторов зависит его потенциал?

4. Почему при определении концентрации фторид-иона методом прямой потенциометрии в анализируемом и стандартных растворах необходимо создавать одинаковую ионную силу?

5. Какой диапазон значений рН является оптимальным для определения фторид-иона с помощью фторид-селективного электрода?

6. Каким образом при определении фторид-иона в растворах со сложным солевым составом поддерживают оптимальное значение рН и постоянную ионную силу?

7. Какие ионы мешают определению фторид-иона в растворе с помощью фторид-селективного электрода? Как устраняют их мешающее влияние?

8. Перечислите основные этапы определения концентрации фторид-иона в растворе потенциометрическим методом с применением градуировочного графика.

9. В каких координатах строят градуировочный график при определении концентрации фторид-иона методом прямой потенциометрии?

10. Чему должен быть равен угловой коэффициент (тангенс угла наклона) градуировочного графика, построенного в координатах, для стандартных растворов натрия фторида с одинаковой ионной силой при 25 °C?

11. Как рассчитать концентрацию фторид-иона в растворе с использованием данных градуировочного графика, построенного в координатах, если известна ЭДС элемента в анализируемом растворе?

12. Как приготовить из кристаллического вещества натрия фторида стандартный раствор с концентрацией, точно равной заданной, например 0,1000 моль/л?

13. Как приготовить стандартный раствор натрия фторида из более концентрированного раствора?

14. Назовите диапазон определяемых концентраций и процентную погрешность определения фторид-иона с помощью фторидселективного электрода методом градуировочного графика.

15. Назовите области применения фторид-селективного электрода.

Занятие 2. Потенциометрическое титрование

К занятию необходимо знать

1. Принцип методов потенциометрического анализа. Уравнение Нернста. Разновидности методов потенциометрического анализа.

2. Принципиальную схему установки для потенциометрического титрования.

3. Индикаторные электроды, применяемые в потенциометрическом титровании в зависимости от типа реакции титрования; электроды сравнения.

4. Способы индикации точки эквивалентности в потенциометрическом титровании.

5. Преимущества потенциометрического титрования перед титриметрическим анализом с визуальной индикацией точки эквивалентности.

6. Сущность определения новокаина методом потенциометрического титрования.

К занятию необходимо уметь

1. Готовить анализируемый раствор растворением навески испытуемого образца с точно известной массой.

2. Рассчитывать массовую долю вещества в анализируемом образце на основе результатов титрования.

3. Писать уравнение реакции, протекающей при титровании.

Вопросы для самопроверки

1. Какой принцип лежит в основе метода потенциометрического титрования?

2. Каким уравнением выражается зависимость электродного потенциала от концентрации (активности) потенциалопределяющих компонентов в растворе?

3. Какой электрохимический параметр измеряют при определении вещества методом потенциометрического титрования?

4. Дайте определение понятиям «индикаторный электрод», «электрод сравнения».

5. В чем причина резкого изменения электродвижущей силы гальванического элемента (потенциала индикаторного электрода) в титруемом растворе вблизи точки эквивалентности?

6. Назовите известные способы определения точки эквивалентности на основе данных потенциометрического титрования.

7. Для каких типов химических реакций можно использовать метод потенциометрического титрования? Какие электроды применяются при этом?

8. В чем преимущество потенциометрического титрования перед титриметрическим анализом с визуальной индикацией точки эквивалентности?

9. Назовите диапазон определяемых концентраций и процентную (относительную) погрешность определения вещества методом потенциометрического титрования.

10. Какая химическая реакция лежит в основе определения вещества, содержащего первичную ароматическую аминогруппу, методом нитритометрического титрования? Каковы условия ее проведения? Применяемые индикаторы?

11. Какой принцип лежит в основе определения новокаина методом потенциометрического титрования? Перечислите основные этапы анализа.

Лабораторная работа «Определение массовой доли новокаина в препарате»

Цель работы

Научиться применять метод потенциометрического титрования для количественного определения вещества.

Целевые задачи

1. Ориентировочное потенциометрическое титрование новокаина раствором натрия нитрита.

2. Точное потенциометрическое титрование новокаина раствором натрия нитрита.

3. Нахождение конечной точки потенциометрического титрования.

4. Расчет массовой доли новокаина в препарате.

Материальное обеспечение

Реактивы

1. Натрия нитрит, стандартный ~0,1 моль/л раствор.

2. Новокаин, порошок.

3. Калия бромид, порошок.

4. Кислота соляная концентрированная (= 1,17 г/мл).

5. Вода дистиллированная. Лабораторная посуда

1. Колба мерная на 100 мл.

2. Колба мерная на 20 мл.

3. Бюретка на 25 мл.

4. Цилиндр мерный на 20 мл.

5. Цилиндр мерный на 100 мл.

6. Стакан для титрования на 150 мл.

7. Бюкс.

8. Воронка.

9. Промывалка на 250 или 500 мл.

Приборы

1. Иономер универсальный ЭВ-74 или аналогичный.

2. Электрод индикаторный платиновый ЭТПЛ-01 М или аналогичный.

3. Электрод сравнения, вспомогательный лабораторный хлорсеребряный ЭВЛ-1МЗ или аналогичный.

Подготовка хлорсеребряного электрода к эксплуатации - см. выше, предыдущую лабораторную работу.

4. Штатив для закрепления двух электродов и бюретки.

5. Мешалка магнитная.

6. Весы аналитические с разновесом.

7. Весы технохимические с разновесом.

Прочие материалы: см. «Материальное обеспечение» в предыдущей работе.

Сущность работы

Потенциометрическое титрование основано на индикации точки эквивалентности по резкому изменению (скачку) потенциала индикаторного электрода в процессе титрования.

Для определения новокаина - вещества, содержащего первичную ароматическую аминогруппу, - применяют метод нитритометрического титрования, согласно которому новокаин титруют стандартным 0,1 моль/л раствором натрия нитрита в солянокислой среде в присутствии калия бромида (ускоряет протекание реакции) при температуре не выше 18-20 °C. В таких условиях реакция титрования протекает количественно и достаточно быстро:


За ходом реакции диазотирования наблюдают с помощью индикаторного платинового электрода, который в паре с подходящим электродом сравнения (хлорсеребряным или каломельным) погружают в титруемый раствор, и измеряют электродвижущую силу элемента в зави-

симости от объема прибавленного титранта

Потенциал индикаторного электрода согласно уравнению Нернста зависит от концентрации (активности) веществ, участвующих в реакции титрования. Вблизи точки эквивалентности (ТЭ) концентрация потенциалопределяющих веществ резко изменяется, что сопровождается резким изменением (скачком) потенциала индикаторного электрода. ЭДС элемента определяется разностью потенциалов между индикаторным электродом и электродом сравнения. Поскольку потенциал электрода сравнения сохраняется постоянным, скачок потенциала индикаторного электрода вызывает резкое изменение ЭДС элемента, что указывает на достижение ТЭ. Для большей точности определения ТЭ титрант в конце титрования прибавляют по каплям.

Графические способы, обычно применяемые для нахождения ТЭ, в данном случае применять вряд ли целесообразно, так как кривая титрования, построенная в координатах, асимметрична относительно ТЭ; установить ТЭ с достаточно высокой точностью довольно сложно.

Процентная погрешность определения новокаина в препарате методом потенциометрического титрования не превышает 0,5%.

Аналогично определению новокаина методом потенциометрического титрования можно определять многие другие органические соединения и лекарственные препараты, содержащие первичную ароматическую аминогруппу, например, сульфацил, норсульфазол, производные n-аминобензойной кислоты и др.

Примечание. Реакция диазотирования протекает медленно. На скорость ее протекания влияют различные факторы. Увеличение кислотности приводит к уменьшению скорости реакции, поэтому при титровании стараются избегать большого избытка соляной кислоты. Для ускорения реакции в реакционную смесь вводят калия бромид. Температура оказывает обычное влияние

на скорость реакции: повышение температуры на 10 °C приводит к увеличению скорости примерно в 2 раза. Однако титрование, как правило, проводят при температуре не выше 18-20 °C, а во многих случаях еще ниже, при охлаждении реакционной смеси до 0-10 °C, так как образующиеся в результате реакции диазосоединения неустойчивы и при более высокой температуре разлагаются.

Титрование с применением реакции диазотирования проводят медленно: сначала со скоростью 1-2 мл/мин, а в конце титрования - 0,05 мл/мин.

Порядок выполнения работы

ВНИМАНИЕ! В данной работе предусмотрено применение универсального иономера ЭВ-74. При использовании приборов другого типа необходимо дополнительно давать их описание в лабораторных методических указаниях.

1. Знакомство с «Инструкцией по технике безопасности при работе с электроприборами» (см. Приложение 1).

2. Знакомство с назначением, принципом работы и «Инструкцией по эксплуатации универсального иономера ЭВ-74» (см. Приложения 2, 3) или аналогичного прибора.

3. Подготовка иономера к измерениям.

3.1. Собирают гальванический элемент из индикаторного платинового электрода и хлорсеребряного электрода сравнения.

Платиновый электрод закрепляют в штативе рядом с электродом сравнения.

ВНИМАНИЕ! Держатели, предназначенные для закрепления в штативе электродов и бюретки, обычно заранее установлены надлежащем образом. Их положение изменять не рекомендуется. Для того чтобы закрепить платиновый электрод или заменить раствор в ячейке, следует сначала осторожно убрать из-под ячейки магнитную мешалку.

Для закрепления платиновый электрод подводят в лапку штатива снизу так, чтобы его нижний конец оказался несколько выше (примерно на 0,5 см) нижнего конца электрода сравнения. Индикаторный электрод подключают к иономеру через гнездо «Изм.», находящееся на задней панели прибора (см. Приложение 3, п. 1.1). Электрод сравнения должен быть подключен к иономеру через гнездо «Всп.».

Электроды многократно промывают дистиллированной водой из промывалки над стаканом на 200-250 мл, после чего под электроды подводят стакан на 150 мл с дистиллированной водой, который устанавливают в центре столика магнитной мешалки. Правильно закрепленные электроды не должны касаться стенок и дна стакана, а также магнитного стержня, применяемого в дальнейшем для перемешивания раствора.

3.2. Иономер включают в сеть под наблюдением преподавателя, руководствуясь инструкцией по эксплуатации прибора (Приложение 3, п.п. 1.2-1.7). Дают прибору прогреться в течение 30 мин.

4. Приготовление анализируемого раствора новокаина. Готовят примерно 0,05 моль/л раствор новокаина в 2 моль/л растворе соляной кислоты. Для этого около 0,9 г препарата (навеску взвешивают в бюксе на аналитических весах с точностью до ±0,0002 г) помещают в мерную колбу на 100 мл, добавляют 20-30 мл дистиллированной воды, 16,6 мл концентрированного раствора соляной кислоты (= 1,17 г/мл). Смесь перемешивают до полного растворения препарата, доводят объем раствора до метки дистиллированной водой, содержимое колбы перемешивают.

5. Ориентировочное титрование. В стакан вместимостью 150 мл пипеткой помещают 20 мл анализируемого раствора новокаина, прибавляют 60 мл дистиллированной воды с помощью цилиндра и около 2 г калия бромида. Электроды - индикаторный платиновый и вспомогательный хлорсеребряный - погружают в титруемый раствор, опускают магнитный стержень и устанавливают ячейку в центре столика магнитной мешалки. Если на то будет указание преподавателя, открывают боковое отверстие хлорсеребряного электрода, удалив из него резиновую пробку. Бюретку на 25 мл наполняют стандартным 0,1 моль/л раствором натрия нитрита и закрепляют в штативе так, чтобы нижний конец бюретки был опущен в стакан на 1-2 см ниже его края. Включают магнитную мешалку. Перемешивание не прекращают в течение всего процесса титрования.

Прибор включают в режим милливольтметра для измерения положительных потенциалов (+мВ). При ориентировочном титровании измерение ЭДС системы производят на широком диапазоне (-119) так, как указано в Приложении 3, п.п. 2.1-2.5, раствор титранта прибавляют порциями по 1 мл, каждый раз измеряя ЭДС системы после того, как показание прибора примет установившееся значение.

Наблюдают резкое изменение ЭДС (скачок титрования), а затем прибавляют еще 5-7 мл титранта порциями по 1 мл и убеждаются в незначительном изменении измеряемой величины. По окончании титрования выключают магнитную мешалку. Результаты измерений заносят в табл. 3-11.

На основании результатов ориентировочного титрования устанавливают объем титранта, после добавления которого наблюдается скачок титрования. Этот объем считают близким к объему, соответствующему конечной точке титрования (КТТ).

В приведенном в табл. 3-11 примере объем титранта, затраченный на ориентировочное титрование, составляет 11 мл.

Таблица 3-11. Ориентировочное титрование (пример)

По результатам ориентировочного титрования строят кривую титрования в координатахОтмечают асимметричный характер кривой, затрудняющий определение КТТ графическим способом с надлежащей точностью.

6. Точное титрование. В чистый стакан на 150 мл помещают новую порцию анализируемого раствора новокаина, дистиллированную воду, калия бромид в тех же количествах, что и при ориентировочном титровании. В раствор погружают электроды, предварительно промытые дистиллированной водой, опускают магнитный стержень и включают магнитную мешалку. При точном титровании измерение ЭДС проводят на узком диапазоне (49) так, как указано в приложении 3, п. 2.5.

Сначала к титруемому раствору со скоростью 1 мл/мин прибавляют такой объем титранта, который должен быть на 1 мл меньше объема, затраченного на ориентировочное титрование, после чего измеряют ЭДС элемента. В приведенном примере объем прибавленного титранта составляет: 11 - 1 = 10 мл.

Затем титрант прибавляют порциями по 2 капли, каждый раз измеряя ЭДС после того, как показание прибора примет установившееся значение. Наблюдают резкое изменение ЭДС (скачок титрования), а затем продолжают титрование порциями по 2 капли и убеждаются в уменьшении и небольшом изменении По окончании титрования отмечают общий объем добавленного титранта с точностью до сотых долей миллилитра.

Выключают магнитную мешалку. Результаты титрования заносят в табл. 3-12.

Точное титрование проводят не менее трех раз. По окончании измерений закрывают отверстие хлорсеребряного электрода резиновой пробкой и выключают прибор, как указано в Приложении 3, п. 2.6.

7. Расчет результата анализа. На основании данных точного титрования вычисляют сначала объем одной капли а затем объем титранта, соответствующийпо формулам:

где- объем титранта, после прибавления которого титрование продолжают по каплям, мл;- объем титранта в конце титрования, мл; n - общее число добавленных капель титранта;- число капель титранта, добавленных до появления скачка титрования;- число капель, составляющих порцию раствора титранта, вызвавшую скачок титрования.

Таблица 3-12. Точное титрование (пример)

Пример. Расчет по данным табл. 3-12.


Объем титранта , затраченный на титрование, определяют для каждого i-го титрования.

Массовую долю (в процентах) новокаина в препаратерассчи-

тывают с точностью до сотых долей процента по формуле:


где с - молярная концентрация титранта: стандартного раствора натрия нитрита, моль/л; - объем титранта, затраченный на i-е точное титрование, мл;

Объем аликвотной доли раствора новокаина, мл; - общий объем анализируемого раствора новокаина, мл; M - молярная масса новокаина, равная 272,78 г/моль; m - масса навески препарата, содержащего новокаин, г.

Полученные значения массовой доли новокаина в препарате обрабатывают методом математической статистики, представляя результат анализа в виде доверительного интервала для доверительной вероятности 0,95.

Контрольные вопросы

1. В чем состоит принцип определения новокаина методом потенциометрического титрования?

2. Какая химическая реакция лежит в основе определения новокаина методом потенциометрического титрования?

3. С помощью каких электродов можно следить за ходом реакции диазотирования в процессе титрования новокаина раствором натрия нитрита?

4. Чем вызван скачок ЭДС (скачок потенциала индикаторного электрода) в области точки эквивалентности при титровании новокаина раствором натрия нитрита?

5. В каких условиях реакция диазотирования (с участием новокаина) протекает количественно и достаточно быстро?

6. С какой скоростью проводят потенциометрическое титрование новокаина раствором натрия нитрита?

7. Какой вид имеет кривая титрования новокаина раствором натрия нитрита, построенная в координатах «ЭДС - объем титранта»?

8. Целесообразно ли применять графические способы определения точки эквивалентности при потенциометрическом титровании новокаина?

10. Чему равна процентная (относительная) погрешность определения новокаина в препарате методом потенциометрического титрования?

11. Какие преимущества имеет потенциометрический способ индикации точки эквивалентности по сравнению с визуальным при определении новокаина методом нитритометрического титрования?

12. Какие вещества можно определять методом потенциометрического титрования по аналогии с определением новокаина?

Приложение 1

Инструкция по технике безопасности при работе с электроприборами

Работать с незаземленными приборами;

Оставлять включенный прибор без присмотра;

Перемещать включенный прибор;

Работать вблизи открытых токонесущих частей прибора;

Включать и выключать прибор влажными руками.

2. В случае перерыва в подаче электроэнергии немедленно выключить прибор.

3. В случае загорания проводов или электроприбора необходимо немедленно их обесточить и гасить огонь с помощью сухого огнетушителя, покрывала из асбеста, песком, но не водой.

Приложение 2

Назначение и принцип работы универсального иономера ЭВ-74

1. Назначение прибора

Универсальный иономер ЭВ-74 предназначен для определения в комплекте с ионселективными электродами активности (показателя активности - рХ) одно- и двухзарядных ионов (например,, и др.), а также для измерения окислительно-восстановительных потенциалов (электродвижущей силы) -соответствующих электродных систем в водных растворах электролитов.

Иономер можно использовать также в качестве высокоомного милливольтметра.

2. Принцип работы прибора

Работа иономера основана на преобразовании электродвижущей силыэлектродной системы в постоянный ток, пропорциональный измеряемой величине. Преобразование осуществляется с помощью высокоомного преобразователя автокомпенсационного типа.

Электродвижущая сила электродной системы сравнивается с противоположным по знаку падением напряжения на прецизионном сопротивлении R, через которое протекает ток усилителя На вход усилителя подается напряжение:

При достаточно большом коэффициенте усиления напряжение мало отличается от электродвижущей силыи благодаря этому ток, протекающий через электроды в процессе измерения, весьма мал, а ток , протекающий через сопротивление R, пропорционален электродвижущей силе электродной системы:

Измерив ток с помощью микроамперметра А, можно определить а также в исследуемом растворе.

Приложение 3

Инструкция по эксплуатации универсального иономера ЭВ-74 для измерения окислительно-восстановительных потенциалов (ЭДС) электродных систем

Измерения могут проводиться как в милливольтах, так и в единицах рХ по шкале прибора. При измерении ЭДС поправка на температуру испытуемого раствора не вводится.

1. Подготовка иономера ЭВ-74 к измерениям.

1.1. Выбирают необходимые электроды и закрепляют их в штативе. Индикаторный электрод подключают к гнезду «Изм.» непосредственно или с помощью переходного штекера, а электрод сравнения - к гнезду «Всп.» на задней панели прибора. Электроды промывают и погружают в стакан с дистиллированной водой.

1.2. Проверяют наличие заземления корпуса прибора.

1.3. Устанавливают механический ноль показывающего прибора, для чего, поворачивая отверткой корректор нуля, устанавливают стрелку на нулевую (начальную) отметку шкалы.

1.4. Нажимают нижнюю кнопку «t°» выбора рода работы и верхнюю кнопку «-119» выбора диапазона измерения.

1.5. Подключают прибор к сети 220 В с помощью шнура.

1.6. Включают прибор с помощью тумблера «Сеть». При подаче напряжения загорается глазок индикации включения.

1.7. Прибор прогревается в течение 30 мин.

2. Измерение окислительно-восстановительных потенциалов (ЭДС) электродных систем.

2.1. Электроды погружают в стакан с испытуемым раствором, предварительно удалив с поверхности электродов избыток дистиллированной воды фильтровальной бумагой.

2.2. Включают магнитную мешалку.

2.3. Нажимают кнопку и кнопку выбранного диапазона измерения.

2.4. Оставляют отжатой кнопку «анион | катион; +|-», если измеряют положительные потенциалы, и нажимают при измерении отрицательных потенциалов.

2.5. Дают установиться показаниям прибора и проводят отсчет значения потенциала в милливольтах по соответствующей шкале показывающего прибора, умножая показание прибора на 100:

При измерении на широком диапазоне «-119» отсчет проводят по нижней шкале с оцифровкой от -1 до 19;

При измерении на узком диапазоне «-14» отсчет проводят по верхней шкале с оцифровкой от -1 до 4;

При измерении на одном из узких диапазонов «49», «914», «1419» отсчет проводят по верхней шкале с оцифровкой от 0 до 5, причем показание прибора суммируют со значением нижнего предела выбранного диапазона.

Пример. Переключатель диапазонов установлен в положение «49», а стрелка прибора установилась на значении 3,25. В этом случае измеряемая величина равна: (4 + 3,25) . 100=725 мВ.

2.6. По окончании измерений нажимают на кнопку «t°» и «-119», выключают прибор с помощью тумблера «Сеть» и отключают прибор и магнитную мешалку от сети. Электроды и стержень магнитной мешалки промывают дистиллированной водой и сдают лаборанту.

Занятие 3. Кулонометрический анализ Принцип метода

Кулонометрический анализ (кулонометрия) основан на использовании зависимости между массой m вещества, прореагировавшего при электролизе в электрохимической ячейке, и количеством электричества Q, прошедшего через электрохимическую ячейку при электролизе только этого вещества. В соответствии с объединенным законом электролиза М. Фарадея масса m (в граммах) связана с количеством электричества Q (в кулонах) соотношением:

(1)

где M - молярная масса вещества, прореагировавшего при электролизе, г/моль; n - число электронов, участвующих в электродной реакции; F = 96 487 Кл/моль - число Фарадея.

Количество электричества(в кулонах), прошедшее при электролизе через электрохимическую ячейку, равно произведению электрического тока(в амперах) на время электролиза(в секундах):

(2)

Если измерено количество электричества то согласно (1) можно рассчитать массу m. Это справедливо в том случае, когда все количество электричества прошедшее при электролизе через электрохимическую ячейку, израсходовано только на электролиз данного вещества; побоч-

ные процессы должны быть исключены. Другими словами, выход (эффективность) по току должен быть равен 100%.

Поскольку в соответствии с объединенным законом электролиза М. Фарадея (1) для определения массы m (г) прореагировавшего при электролизе вещества необходимо измерить количество электричества Q, затраченное на электрохимическое превращение определяемого вещества, в кулонах, то метод и назван кулонометрией. Главная задача кулонометрических измерений - как можно более точно определить количество электричества Q.

Кулонометрический анализ проводят либо в амперостатическом (гальваностатическом) режиме, т.е. при постоянном электрическом токе i = const, либо при контролируемом постоянном потенциале рабочего электрода (потенциостатическая кулонометрия), когда электрический ток изменяется (уменьшается) в процессе электролиза.

В первом случае для определения количества электричества Q достаточно как можно более точно измерить время электролиза, постоянный ток и рассчитать величину Q по формуле (2). Во втором случае величину Q определяют либо расчетным способом, либо с помощью химических кулонометров.

Различают прямую и косвенную кулонометрию (кулонометрическое титрование).

Прямая кулонометрия

Сущность метода

Прямую кулонометрию при постоянном токе применяют редко. Чаще используют кулонометрию при контролируемом постоянном потенциале рабочего электрода или прямую потенциостатическую кулонометрию.

В прямой потенциостатической кулонометрии электролизу подвергают непосредственно определяемое вещество. Измеряют количество электричества, затраченное на электролиз этого вещества, и по уравнению (1) рассчитывают массу m определяемого вещества.

В процессе электролиза потенциал рабочего электрода поддерживают постоянным, для чего обычно используют приборы - потенциостаты.

Постоянное значение потенциала E выбирают предварительно на основании рассмотрения вольтамперной (поляризационной) кривой, построенной в координатах «ток i - потенциал Е», полученной в тех же условиях, в которых будет проводиться электролиз. Обычно выбирают

значение потенциала Е, соответствующее области предельного тока для определяемого вещества и несколько превышающее его потенциал полуволны(на ~0,05-0,2 B). При этом значении потенциала фоновый электролит не должен подвергаться электролизу.

В качестве рабочего электрода чаще всего применяют платиновый электрод, на котором происходит электрохимическое восстановление или окисление определяемого вещества. Кроме рабочего электрода электрохимическая ячейка включает 1 или 2 других электрода - электрод сравнения, например, хлорсеребряный, и вспомогательный электрод, например, из стали.

По мере протекания процесса электролиза при постоянном потенциале электрический ток в ячейке уменьшается, так как понижается концентрация электроактивного вещества, участвующего в электродной реакции. При этом электрический ток уменьшается со временем по экспоненциальному закону от начального значения в момент времени до значения в момент времени

(3)

где коэффициентзависит от природы реакции, геометрии электрохимической ячейки, площади рабочего электрода, коэффициента диффузии определяемого вещества, скорости перемешивания раствора и его объема.

График функции (3) схематически показан на рис. 3-10.


Рис. 3-10. Изменение токасо временемв прямой потенциостатической кулонометрии

Выход по току будет количественным, когда ток уменьшится до нуля, т.е. при бесконечно большом времени . На практике электролиз

определяемого вещества считают количественным, когда ток достигнет очень малой величины, не превышающей ~0,1% значения При этом ошибка определения составляет около ~0,1%.

Поскольку количество электричества определяется как произведение тока на время электролиза, очевидно, что общее количество электричества Q, затраченное на электролиз определяемого вещества, равно:

(4)

т.е. определяется площадью, ограниченной осями координат и экспонентой на рис. 3-10.

Для нахождения массы m прореагировавшего вещества требуется согласно (1) измерить или рассчитать количество электричества Q.

Способы определения количества электричества, прошедшего через раствор, в прямой потенциостатической кулонометрии

Величину Q можно определить расчетными способами либо с помощью химического кулонометра.

. Расчет величины Q по площади под кривой зависимости i от Измеряют площадь, ограниченную осями координат и экспонентой (3) (см. рис. 3-10). Если ток i выражен в амперах, а время - в секундах, то измеренная площадь равна количеству электричества Q в кулонах.

Для определения Q без заметной ошибки способ требует практически полного завершения процесса электролиза, т.е. длительного времени. На практике измеряют площадь при значении т, соответствующем i = 0,001(0,1% от.

. Расчет величины Q на основе зависимости от В соответствии с (3) и (4) имеем:


поскольку:

Таким образом, и для определения величины Q необходимо

найти значения

Согласно (3). После логарифмирования этого уравнения по-

лучаем линейную зависимость от

(5)

Если измерить несколько значенийв различные моменты времени(например, воспользовавшись кривой типа представленной на рис. 3-10 или непосредственно опытным путем), можно построить график функции (5), схематически показанный на рис. 3-11 и представляющий собой прямую линию.

Отрезок, отсекаемый прямой линией на оси ординат, равена тангенс угла наклона прямой к оси абсцисс равен:

Зная значенияа следовательно,можно рассчитать величи-

ну, а затем и массу m по формуле (1).


Рис. 3-11. Зависимостьот времени электролизав прямой потенциостатической кулонометрии

. Определение величины Q с помощью химического кулонометра. При этом способе в электрическую цепь кулонометрической установки включают химический кулонометр последовательно с электрохимической ячейкой, в которой проводят электролиз определяемого вещества. Количество электричества Q, проходящее через последовательно соединенные кулонометр и электрохимическую ячейку, одинаково. Конструкция кулонометра позволяет экспериментально определить величину Q.

Чаще всего применяют серебряный, медный и газовые кулонометры, реже некоторые другие. Использование серебряного и медного кулонометров основано на электрогравиметрическом определении массы серебра или меди, осаждающейся на платиновом катоде при электролизе.

Зная массу металла, выделившегося на катоде в кулонометре, можно по уравнению (1) рассчитать количество электричества Q.

Кулонометры, особенно серебряный и медный, позволяют определять количество электричества Q с высокой точностью, однако работа с ними довольно трудоемка и продолжительна.

В кулонометрии применяют также электронные интеграторы, позволяющие регистрировать количество электричества Q, затраченное на электролиз, по показаниям соответствующего прибора.

Применение прямой кулонометрии

Метод обладает высокими селективностью, чувствительностью (до 10 -8 -10 -9 г или до ~10 -5 моль/л), воспроизводимостью (до ~1-2%), позволяет определять содержание микропримесей. К недостаткам метода относится большая трудоемкость и длительность проведения анализа, необходимость наличия дорогостоящей аппаратуры.

Прямую кулонометрию можно применять для определения ионов металлов, органических нитро- и галогенпроизводных, хлорид-, бромид-, иодид-, тиоцианат-анионов, ионов металлов в низших степенях окисления при переводе их в более высокие состояния окисления, например:

И т.д.

В фармацевтическом анализе прямую кулонометрию применяют для определения аскорбиновой и пикриновой кислот, новокаина, оксихинолина и в некоторых других случаях.

Прямая кулонометрия довольно трудоемка и продолжительна. Кроме того, в ряде случаев начинают заметно протекать побочные процессы еще до завершения основной электрохимической реакции, что снижает выход по току и может привести к значительным ошибкам анализа. Именно поэтому чаще применяют косвенную кулонометрию - кулонометрическое титрование.

Кулонометрическое титрование

Сущность метода

При кулонометрическом титровании определяемое вещество X, находящееся в растворе в электрохимической ячейке, реагирует с титрантом T - веществом, непрерывно образующимся (генерируемым) на генераторном электроде при электролизе вспомогательного вещества, также присутствующего в растворе. Окончание титрования - момент, когда все определяемое вещество X полностью прореагирует с генерируемым титрантом T, фиксируют либо визуально индикаторным мето-

дом, вводя в раствор соответствующий индикатор, меняющий окраску вблизи ТЭ, либо с помощью инструментальных методов - потенциометрически, амперометрически, фотометрически.

Таким образом, при кулонометрическом титровании титрант не прибавляется из бюретки в титруемый раствор. Роль титранта играет вещество T, непрерывно генерируемое при электродной реакции на генераторном электроде. Очевидно, имеется аналогия между обычным титрованием, когда титрант вводится извне в титруемый раствор и по мере его прибавления реагирует с определяемым веществом, и генерацией вещества T, которое по мере своего образования также реагирует с определяемым веществом, поэтому рассматриваемый метод и получил название «кулонометрическое титрование».

Кулонометрическое титрование проводят в амперостатическом (гальваностатическом) или в потенциостатическом режиме. Чаще кулонометрическое титрование проводят в амперостатическом режиме, поддерживая электрический ток постоянным в течение всего времени электролиза.

Вместо объема прибавленного титранта в кулонометрическом титровании измеряют время т и ток i электролиза. Процесс образования вещества T в кулонометрической ячейке во время электролиза называется генерацией титранта.

Кулонометрическое титрование при постоянном токе

При кулонометрическом титровании в амперостатическом режиме (при постоянном токе) измеряют времяв течение которого проводился электролиз, и количество электричества Q, израсходованное при электролизе, рассчитывают по формуле (2), после чего находят массу определяемого вещества X по соотношению (1).

Так, например, стандартизацию раствора хлороводородной кислоты методом кулонометрического титрования проводят путем титрования ионов водорода стандартизуемого раствора, содержащего HCl, электрогенерируемыми на платиновом катоде гидроксид-ионами OH - при электролизе воды:

Образовавшийся титрант - гидроксид-ионы - реагирует с ионами в растворе:


Титрование ведут в присутствии индикатора фенолфталеина и прекращают при появлении светло-розовой окраски раствора.

Зная величину постоянного токав амперах) и время(в секундах), затраченное на титрование, рассчитывают по формуле (2) количество электричества Q (в кулонах) и по формуле (1) - массу (в граммах) прореагировавшей HCl, содержавшуюся в аликвоте стандартизуемого раствора HCl, внесенного в кулонометрическую ячейку (в генераторный сосуд).

На рис. 3-12 схематически показан один из вариантов электрохимической ячейки для кулонометрического титрования с визуальной (по изменению окраски индикатора) индикацией окончания титрования, с генераторным катодом и вспомогательным анодом.

Генераторный платиновый электрод 1 (в рассматриваемом случае - анод) и вспомогательный платиновый электрод 2 (в рассматриваемом случае - катод) помещены соответственно в генерационный (генераторный) сосуд 3 и вспомогательный сосуд 4. Генерационный сосуд 3 заполнен испытуемым раствором, содержащим определяемое вещество X, фоновый электролит с вспомогательным электроактивным веществом и индикатором. Вспомогательное вещество и само может играть роль фонового электролита; в таких случаях нет необходимости вводить в раствор другой фоновый электролит.

Генерационный и вспомогательный сосуды соединены электролитическим (солевым) мостиком 5, заполненным сильным индифферентным электролитом для обеспечения электрического контакта между электродами. Концы трубки электролитического мостика закрыты пробками из фильтровальной бумаги. В генерационном сосуде имеется магнитный стержень 6 для перемешивания раствора посредством магнитной мешалки.

Электрохимическая ячейка включается в электрическую цепь установки для кулонометрического титрования, способную поддерживать ток постоянным и требуемой величины (например, используют универсальный источник питания типа лабораторного прибора УИП-1 и подобную аппаратуру).

До кулонометрического титрования электроды тщательно промывают дистиллированной водой, в генерационный сосуд вносят раствор с вспомогательным электроактивным (в данных условиях) веществом, при необходимости - фоновый электролит и индикатор.

Поскольку приготовленный таким путем фоновый раствор может содержать электровосстанавливающиеся или электроокисляющиеся примеси, то вначале проводят предэлектролиз фонового раствора в целях электровосстановления или электроокисления примесей. Для этого замыкают электрическую цепь установки и ведут электролиз в течение

некоторого (обычно небольшого) времени до изменения окраски индикатора, после чего цепь размыкают.


Рис. 3-12. Схема электрохимической ячейки для кулонометрического титрования с визуальной индикаторной фиксацией окончания титрования: 1 - рабочий генераторный платиновый электрод; 2 - вспомогательный платиновый электрод; 3 - генерационный сосуд с испытуемым раствором; 4 - вспомогательный сосуд с раствором сильного индифферентного электролита; 5 - электролитический мостик; 6 - стержень магнитной мешалки

После завершения предэлектролиза в генерационный сосуд вносят точно измеренный объем анализируемого раствора, включают магнитную мешалку, замыкают электрическую цепь установки, одновременно включая секундомер, и ведут электролиз при постоянном токе до момента резкого изменения окраски индикатора (раствора), когда сразу же останавливают секундомер и размыкают электрическую цепь установки.

Если анализируемый раствор, вводимый в кулонометрическую ячейку для титрования, содержит примеси электровосстанавливающихся или электроокисляющихся веществ, на превращения которых затрачивается при электролизе некоторое количество электричества, то после предэлектролиза (до прибавления в ячейку анализируемого раствора) проводят холостое титрование, вводя в кулонометрическую ячейку вместо анализируемого раствора точно такой же объем раствора, который содержит все те же вещества и в тех же количествах, что и прибавленный анализируемый раствор, за исключением определяемого вещества X. В простейшем случае к фоновому раствору прибавляют дистиллированную воду в объеме, равном объему аликвоты анализируемого раствора с определяемым веществом.

Время, затраченное на холостое титрование, в дальнейшем вычитают из времени, затраченного на титрование испытуемого раствора с определяемым веществом.

Условия проведения кулонометрического титрования. Должны обеспечить 100% выход по току. Для этого необходимо выполнять, по крайней мере, следующие требования.

1. Вспомогательный реагент, из которого на рабочем электроде генерируется титрант, должен присутствовать в растворе в большом избытке по отношению к определяемому веществу (~1000-кратный избыток). В этих условиях обычно устраняются побочные электрохимические реакции, основная из которых - окисление или восстановление фонового электролита, например, ионов водорода:

2. Величина постоянного тока i = const при проведении электролиза должна быть меньше величины диффузионного тока вспомогательного реагента во избежание протекания реакции с участием ионов фонового электролита.

3. Необходимо как можно точнее определять количество электричества, израсходованное при проведении электролиза, для чего требуется точно фиксировать начало и конец отсчета времени и величину тока электролиза.

Индикация конца титрования. При кулонометрическом титровании ТЭ определяют либо визуальным индикаторным, либо инструментальными (спектрофотометрическими, электрохимическими) методами.

Например, при титровании раствора тиосульфата натрия электрогенерированным йодом в кулонометрическую ячейку прибавляют индикатор - раствор крахмала. После достижения ТЭ, когда в растворе оттитрованы все тиосульфат-ионы, первая же порция электрогенерированного йода окрашивает раствор в синий цвет. Электролиз прерывают.

При электрохимической индикации ТЭ в испытуемый раствор (в генерационный сосуд) помещают еще пару электродов, входящих в дополнительную индикаторную электрическую цепь. Окончание титрования можно фиксировать с помощью дополнительной индикаторной электрической цепи потенциометрически (рН-метрически) или биамперометрически.

При биамперометрической индикации ТЭ строят кривые титрования в координатахизмеряя ток i в дополнительной инди-

каторной электрической цепи как функцию времениэлектролиза в кулонометрической ячейке.

Кулонометрическое титрование при постоянном потенциале

Потенциостатический режим в кулонометрическом титровании используется реже.

Кулонометрическое титрование в потенциостатическом режиме ведут при постоянном значении потенциала, соответствующем потенциалу разряда вещества на рабочем электроде, например, при катодном восстановлении катионов металлов M n + на платиновом рабочем электроде. По мере протекания реакции потенциал остается постоянным до тех пор, пока прореагируют все катионы металла, после чего он резко уменьшается, поскольку в растворе уже нет потенциалопределяющих катионов металла.

Применение кулонометрического титрования. В кулонометрическом титровании можно использовать все типы реакций титриметрического анализа: кислотно-основные, окислительно-восстановительные, осадительные, реакции комплексообразования.

Малые количества кислот (до ~10 -4 -10 -5 моль/л) можно определять кулонометрическим кислотно-основным титрованием электрогенерированными -ионами, образующимися при электролизе воды на катоде:

Можно титровать и основания ионами водорода генерируемыми на аноде при электролизе воды:


При окислительно-восстановительном бромометрическом кулонометрическом титровании можно определять соединения мышьяка(III), сурьмы(III), иодиды, гидразин, фенолы и другие органические вещества. В роли титранта выступает электрогенерируемый на аноде бром:

Осадительным кулонометрическим титрованием можно определять галогенид-ионы и органические серосодержащие соединения электрогенерированными катионами серебра катионы цинка - электрогенерированными ферроцианид-ионами и т.д.

Комплексонометрическое кулонометрическое титрование катионов металлов можно проводить анионами ЭДТА, электрогенерированными на катоде из комплексоната ртути(II).

Кулонометрическое титрование обладает высокой точностью, широким диапазоном применения в количественном анализе, позволяет определять малые количества веществ, малостойкие соединения (поскольку они вступают в реакции сразу же после их образования), например, меди(I), серебра(II), олова(II), титана(III), марганца(III), хлора, брома и др.

К достоинствам метода относится также и то, что не требуется приготовления, стандартизации и хранения титранта, так как он непрерывно образуется при электролизе и сразу же расходуется в реакции с определяемым веществом.

Цели изучения темы

На основе знания теоретических основ метода кулонометрического титрования и выработки практических умений научиться обоснованно выбирать и практически применять данный метод анализа для количественного определения вещества; уметь проводить статистическую оценку результатов кулонометрического титрования.

Целевые задачи

1. Научиться проводить количественное определение массы натрия тиосульфата в растворе методом кулонометрического титрования.

2. Научиться проводить стандартизацию раствора хлороводородной кислоты методом кулонометрического титрования.

3. Решение типовых расчетных задач.

На изучение темы отводится одно лабораторное занятие из двух, описанных в данном пособии. Рекомендуется проводить лабораторную работу «Определение массы натрия тиосульфата в растворе методом кулонометрического титрования».

Задание для самоподготовки

К занятию необходимо знать

1. Принцип методов кулонометрии.

2. Сущность метода кулонометрического титрования при определении:

а) натрия тиосульфата;

б) хлороводородной кислоты.

Необходимо уметь

1. Писать уравнения электрохимических реакций, протекающих на электродах при кулонометрическом титровании:

а) натрия тиосульфата;

б) хлороводородной кислоты.

2. Писать уравнения электрохимических реакций, протекающих в растворе при кулонометрическом титровании:

а) натрия тиосульфата;

б) хлороводородной кислоты.

3. Рассчитывать количество электричества и массу (концентрацию) вещества по результатам кулонометрического титрования.

4. Обрабатывать результаты параллельных определений вещества методом математической статистики.

Список литературы

1.Учебник. - Книга 2, глава 10. - С. 481-492; 507-509; 512-513.

2.Харитонов Ю.Я., Григорьева В.Ю. Примеры и задачи по аналитической химии.- М.: ГЭОТАР-Медиа, 2009.- С. 240-244; 261-264; 277-281.

Введение

Глава 1. Общие понятия. Классификация электрохимических методов анализа

Глава 2. Потенциометрические методы анализа (потенциометрия)

1 Принцип метода

3 Потенциометрическое титрование

Глава 3. Кондуктометрический метод анализа

1 Принцип метода. Основные понятия

2 Принцип кондуктометрии

3 Кондуктометрическое титрование

Глава 4. Кондуктометрический анализ (кондуктометрия)

1 Сущность метода

2 Количественный полярографический анализ

3 Применение полярографии

Глава 5. Амперометрическое титрование

Глава 6. Кулонометрический анализ (кулонометрия)

1 Принцип метода

3 Кулонометрическое титрование

Заключение

Список литературы

ВВЕДЕНИЕ

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Электрохимические методы анализа делятся на пять основных групп: потенциометрию, вольтамперометрию, кулонометрию, кондуктрометрию и амперометрию.

Применение данных методов в количественном анализе основано на зависимости величин измеряемых параметров при протекании электрохимического процесса от отделяемого вещества в анализируемом растворе, участвующем в данном электрохимическом процессе. К таким параметрам можно отнести разность электрических потенциалов, количество электричества. Электрохимические процессы - это процессы, которые одновременно сопровождаются протеканием химической реакции и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике, электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором, в который погружены электроды.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и тому подобное) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и тому подобное) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, то есть используют зависимость измеряемого параметра от объема титранта.

ГЛАВА 1. ОБЩИЕ ПОНЯТИЯ. КЛАССИФИКАЦИЯ ЭЛЕКТРОХИМИЧЕСКИХ МЕТОДОВ АНАЛИЗА

Электроаналитическая химия включает электрохимические методы анализа, основанные на электродных реакциях и на переносе электричества через растворы.

Применение электрохимических методов в количественном анализе базируется на использовании зависимостей величин измеряемых параметров электрохимических процессов (разность электрических потенциалов, ток, количество электричества) от содержания определяемого вещества в анализируемом растворе, участвующего в данном электрохимическом процессе. Электрохимические процессы - такие процессы, которые сопровождаются одновременным протеканием химических реакций и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором,в который погружены электроды.

Классификация электрохимических методов анализа. Электрохимические методы анализа классифицируют по-разному.Классификация, основанная на учете природы источника электрической энергии в системе. Различают две группы методов:

а) Методы без наложения внешнего (постороннего) потенциала.

Источником электрической энергии служит сама электрохимическая система, представляющая собой гальванический элемент (гальваническую цепь). К таким методам относятся потенциометрические методы. Электродвижущая сила - ЭДС - и электродные потенциалы в такой системе зависят от содержания определяемого вещества в растворе.

б) Методы с наложением внешнего (постороннего) потенциала. К таким методам относятся:

кондуктометрический анализ - основан на измерении электрической проводимости растворов как* функции их концентрации;

вольтамперометрический анализ - основан на измерении тока как функции приложенной известной разности потенциалов и концентрации раствора;

кулонометрический анализ - основан на измерении количества электричества, прошедшего через раствор, как функции его концентрации;

электрогравиметрический анализ - основан на измерении массы продукта электрохимической реакции.

Классификация по способу применения электрохимических методов. Различают прямые и косвенные методы.

а)Прямые методы. Измеряют электрохимический параметр как известную функцию концентрации раствора и по показанию соответствующего измерительного прибора находят содержание определяемого вещества в растворе.

б)Косвенные методы - это методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы.

В соответствии с данной классификацией различают, например, прямую кондуктометрию и кондуктометрическое титрование.

ГЛАВА 2. ПОТЕНЦИОМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА (ПОТЕНЦИОМЕТРИЯ)

1 Принцип метода

Потенциометрический анализ (потенциометрия) основан на измерении ЭДС и электродных потенциалов как функции концентрации анализируемого раствора.

Если в электрохимической системе - в гальваническом элементе -на электродах протекает реакция:

аА+bВ↔dD + еЕ

с переносом п электронов, то уравнение Нернста для ЭДС Е этой реакции имеет вид:

E꞊E˚- RTnFlnaDda Eea(A)a aBb

где, как обычно, Е° - стандартная ЭДС реакции (разность стандартных электродных потенциалов), R - газовая постоянная, Т - абсолютная температура, при которой протекает реакция, F - число Фарадея; а(А), a(В), a(D) и я(Е) - активности реагентов - участников реакции. Уравнение (10.1) справедливо для ЭДС обратимо работающего гальванического элемента.

Для комнатной температуры уравнение (10.1) можно представить в форме:

E꞊E˚- 0,059nlnaDda Eea(A)a aBb

В условиях, когда активности реагентов приблизительно равны их концентрации, уравнение (1) переходит в уравнение (3):

꞊E˚- RTnFlncDdc EecAa aBb

где с(А), с(В), с(Е), c(D) - концентрации реагентов. Для комнатной температуры это уравнение можно представить в виде (4):

꞊E˚- 0,059nlncDdc EecAa aBb

При потенциометрических измерениях в электрохимической ячейке используют два электрода: индикаторный электрод, потенциал которого зависит от концентрации определяемого (потенциалопределяющего) вещества в анализируемом растворе, и электрод сравнения, потенциал которого в условиях проведения анализа остается постоянным. Поэтому величину ЭДС, определяемую уравнениями (1)-(4), можно рассчитать как разность реальных потенциалов этих двух электродов.

В потенциометрии используют электроды следующих типов: электроды первого, второго рода, окислительно-восстановительные, мембранные электроды.

Электроды первого рода - это электроды, обратимые по катиону, общему с материлом электрода. Различают три разновидности электродов первого рода.

а) Металл М, погруженный в раствор соли того же металла. На поверхности таких электродов протекает обратимая реакция:

Мn+ + пе = М

Реальный потенциал такого электрода первого рода зависит от активности a(Mn+) катионов металла и описывается уравнениями (5)-(8).

В общем случае для любой температуры:

꞊E˚+ RTnFln a(Mn+)

Для комнатной температуры:

꞊E˚+ 0,059nln a(Mn+)

При малых концентрациях c(Mn+), когда активность a(Mn+)катионов металла приблизительно равна их концентрации:

꞊E˚+ RTnFln c(Mn+)

Для комнатной температуры:

б)Газовые электроды, например, водородный электрод, в том числе и стандартный водородный электрод. Потенциал обратимо работающего газового водородного электрода определяется активностью ионов водорода, т.е. величиной рН раствора, и при комнатной температуре равен:

꞊E˚+ 0,059 lg а(Н30+) = 0,059 lg а(Н3О+) = -0,059рН

поскольку для водородного электрода стандартный потенциал принимается равным нулю (£° =0), а в соответствии с электродной реакцией:

Н++е = Н

число электронов, участвующих в этой реакции, равно единице: п = 1.

в)Амальгамные электроды, представляющие собой амальгаму металла, погруженную в раствор, содержащий катионы того же металла. Потенциал таких электродов первого рода зависит от активности a(Mn+)катионов металла в растворе и активности я(М) металла в амальгаме:

꞊E˚+ RTnFlna(Mn+)a(M)

Амальгамные электроды обладают высокой обратимостью.

Электроды второго рода обратимы по аниону. Различают следующие виды электродов второго рода.

а) Металл, поверхность которого покрыта малорастворимой солью этого же металла, погруженный в раствор, содержащий анионы, входящие в состав этой малорастворимой соли. Примером могут служить хлорсеребряный электрод Ag|AgCl, КС1 или каломельный электрод Hg|Hg2Cl2, КС1.

Хлорсеребряный электрод состоит из серебряной проволоки, покрытой малорастворимой в воде солью AgCI, погруженной в водный раствор хлорида калия. На хлорсеребряном электроде протекает обратимая реакция

Каломельный электрод состоит из металлической ртути, покрытой пастой малорастворимого хлорида ртути(1) Hg2Cl2 - каломели, контактирующей с водным раствором хлорида калия. На каломельном электроде протекает обратимая реакция:

Cl2 + 2е = 2Hg + 2СГ.

Реальный потенциал электродов второго рода зависит от активности анионов и для обратимо работающего электрода, на котором протекает реакция:

Ne = М + Аn-

описывается уравнениями Нернста (9)-(12).

В общем случае при любой приемлемой температуре Т:

꞊E˚- RTnFln a(An-)

Для комнатной температуры:

꞊E˚- 0,059nln a(An-)

Для условий, в которых активность анионов приблизительно равна их концентрации с(А"~):

E꞊E˚- RTnFln c(An-)

Для комнатной температуры:

꞊E˚- 0,059nln c(An-)

Так, например, реальные потенциалы Е1 и E2 соответственно хлор-серебряного и каломельного электродов при комнатной температуре можно представить в виде:

꞊E1˚- 0,0591g a(Cl-),꞊E2˚- 0,0591g a(Cl-).

Электроды второго рода обладают высокой обратимостью и стабильны в работе, поэтому их часто используют в качестве электродов сравнения, способных устойчиво поддерживать постоянное значение потенциала.

б) Газовые электроды второго рода, например, хлорный электрод Pt, Cl2 КС1. Газовые электроды второго рода в количественном потенциометрическом анализе применяются редко.

Окислительно-восстановительные электроды состоят из инертного материала (платина, золото, вольфрам, титан, графит и др.), погруженного в раствор, содержащий окисленную Ох и восстановленную Red формы данного вещества. Существуют две разновидности окислительно-восстановительных электродов:

а)электроды, потенциал которых не зависит от активности ионов водорода, например, Pt | FeCl3, FeCI2, Pt | K3, K4 и т.д.;

б)электроды, потенциал которых зависит от активности ионов водорода, например, хингидронный электрод.

На окислительно-восстановительном электроде, потенциал которого не зависит от активности ионов водорода, протекает обратимая реакция:

Ох + пе = Red

Реальный потенциал такого окислительно-восстановительного электрода зависит от активности окисленной и восстановленной форм данного вещества и для обратимо работающего электрода описывается, в зависимости от условий (по аналогии с вышерассмотренными потенциалами), уравнениями Нернста (13)-(16):

꞊E˚+ RTnFln a (Ox)a (Red)꞊E˚+ 0,059nlg a (Ox)a (Red)꞊E˚+ RTnFln c(Ox)c (Red)꞊E˚+ 0,059nlg c (Ox)c(Red)

Если в электродной реакции участвуют ионы водорода, то их активность (концентрацию) учитывают в соответствующих уравнениях Нернста для каждого конкретного случая.

Мембранные, или ион-селективные, электроды - электроды, обратимые по тем или иным ионам (катионам или анионам), сорбируемым твердой или жидкой мембраной. Реальный потенциал таких электродов зависит от активности тех ионов в растворе, которые сорбируются мембраной. Мембранные электроды с твердой мембраной содержат очень тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией: раствор (стандартный) с точно известной концентрацией определяемых ионов и анализируемый раствор с неизвестной концентрацией определяемых ионов. Вследствие различной концентрации ионов в обоих растворах ионы на разных сторонах мембраны сорбируются в неодинаковых количествах, неодинаков и возникающий при сорбции ионов электрический заряд на разных сторонах мембраны. Как результат возникает мембранная разность потенциалов.

Определение ионов с применением мембранных ион-селективных электродов называют ионометрией.

Как уже говорилось выше, при потенциометрических измерениях электрохимическая ячейка включает два электрода - индикаторный электрод и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих двух электродов. Поскольку потенциал электрода сравнения в условиях проведения потенциометрического определения остается постоянным, то ЭДС зависит только от потенциала индикаторного электрода, т.е. от активностей (концентраций) тех или иных ионов в растворе. На этом и основано потенциометрическое определение концентрации данного вещества в анализируемом растворе.

Для потенциометрического определения концентрации вещества в растворе применяют как прямую потенциометрию, так и потенциометрическое титрование, хотя второй способ используется намного чаще первого.

Определение концентрации вещества в прямой потенциометрии проводят обычно методом градуировочного графика или методом добавок стандарта.

а) Метод градуировочного графика. Готовят серию из 5-7 эталонных растворов с известным содержанием определяемого вещества. Концентрация определяемого вещества и ионная сила в эталонных растворах не должны сильно отличаться от концентрации и ионной силы анализируемого раствора: в этих условиях уменьшаются ошибки определения.

Ионную силу всех растворов поддерживают постоянной.введением индифферентного электролита. Эталонные растворы последовательно вносят в электрохимическую (потенциометрическую) ячейку. Обычно эта ячейка представляет собой стеклянный химический стакан, в который помещают индикаторный электрод и электрод сравнения.

Измеряют ЭДС эталонных растворов, тщательно промывая дистиллированной водой электроды и стакан перед заполнением ячейки каждым эталонным раствором. По полученным данным строят градуировочный график в координатах ЭДС-lg с, где с - концентрация определяемого вещества в эталонном растворе. Обычно такой график представляет собой прямую линию. Затем в электрохимическую ячейку вносят (после промывания ячейки дистиллированной водой) анализируемый раствор и измеряют ЭДС ячейки. По градуировочному графику находят lg с(Х), где с(Х) - концентрация определяемого вещества в анализируемом растворе.

б) Метод добавок стандарта. В электрохимическую ячейку вносят известный объем V(X) анализируемого раствора с концентрацией с(Х) и измеряют ЭДС ячейки. Затем в тот же раствор прибавляют точно измеренный небольшой объем стандартного раствора V(ст) с известной, достаточно большой, концентрацией с(ст) определяемого вещества и снова определяют ЭДС ячейки.

Рассчитывают концентрацию с(Х) определяемого вещества в анализируемом растворе по формуле (10.17):

с(Х)= с(ст) V (ст)V X+ V (ст)

где E - разность двух измеренных значений ЭДС, п - число электронов, участвующих в электродной реакции.

Применение прямой потенциометрии. Метод применяется для определения концентрации ионов водорода (рН растворов), анионов, ионов металлов (ионометрия).

Большую роль при использовании прямой потенциометрии играют выбор подходящего индикаторного электрода и точное измерение равновесного потенциала.

При определении рН растворов в качестве индикаторных используют электроды, потенциал которых зависит от концентрации ионов водорода: стеклянный, водородный, хингидронный и некоторые другие. Чаще применяют мембранный стеклянный электрод, обратимый по ионам водорода. Потенциал такого стеклянного электрода определяется концентрацией ионов водорода, поэтому ЭДС цепи, включающей стеклянный электрод в качестве индикаторного, описывается при комнатной температуре уравнением:

K + 0,059рН,

где постоянная К зависит от материала мембраны, природы электрода сравнения. Стеклянный электрод позволяет определять рН в интервале рН = 0-10 (чаще - в диапазоне рН = 2-10) и обладает высокой обратимостью и стабильностью в работе.

Хингидронный электрод, часто применявшийся ранее, - это окислительно-восстановительный электрод, потенциал которого зависит от концентрации ионов водорода. Он представляет собой платиновую проволоку, погруженную в раствор кислоты (обычно НС1), насыщенный хингидроном - эквимолекулярным соединением хинона с гидрохиноном состава С6Н402 С6Н4(ОН)2 (темно-зеленый порошок, малорастворимый в воде). Схематическое обозначение хингидронного электрода: Pt | хингидрон, НС1.

На хингидронном электроде протекает окислительно-восстановительная реакция:

С6Н402 + 2Н+ + 2е = С6Н4(ОН)2

Потенциал хингидронного электрода при комнатной температуре описывается формулой

E°-0,059рН.

Хингидронный электрод позволяет измерять рН растворов в интервале рН = 0-8,5. При рН < 0 хингидрон гидролитически расщепляется: при рН > 8,5 гидрохинон, являющийся слабой кислотой, вступает в реакцию нейтрализации, Хингидронный электрод нельзя применять в присутствии сильных окислителей и восстановителей.

Мембранные ион-селективные электроды используют, как уже отмечалось выше, в ионометрии в качестве индикаторных для определения различных катионов (Li+, Na+, К+ Mg2t, Са2+, Cd2+, Fe2+, Ni2+ и др.) ианионов (F-, Сl-, Вг-,I-, S2- и др.).

К достоинствам прямой потенциометрии относятся простота и быстрота проведения измерений, для измерений требуются небольшие объемы растворов.

3Потенциометрическое титрование

Потенциометрическое титрование - способ определения объема титранта, затраченного на титрование определяемого вещества в анализируемом растворе, путем измерения ЭДС (в процессе титрования) с помощью гальванической цепи, составленной из индикаторного электрода

и электрода сравнения. При потенциометрическом титровании анализируемый раствор, находящийся в электрохимической ячейке, титруют

подходящим титрантом, фиксируя конец титрования по резкому изменению ЭДС измеряемой цепи - потенциала индикаторного электрода, который зависит от концентрации соответствующих ионов и резко изменяется в точке эквивалентности.

Измеряют изменение потенциала индикаторного электрода в процессе титрования в зависимости от объема прибавленного титранта. По полученным данным строят кривую потенциометрического титрования и по этой кривой определяют объем израсходованного титранта в ТЭ.

При потенциометрическом титровании не требуется использование индикаторов, изменяющих окраску вблизи ТЭ. Применение потенциометрического титрования. Метод универсальный, его можно применять для индикации конца титрования во всех типах титрования: кислотно-основном, окислительно-восстановительном, комплексиметрическом, осадительном, при титровании в неводных сре-дах. В качестве индикаторных используют стеклянный, ртутный, ионселективные, платиновый, серебряный электроды, а в качестве электродов сравнения - каломельный, хлорсеребряный, стеклянный.

Метод обладает высокой точностью, большой чувствительностью: позволяет проводить титрование в мутных, окрашенных, неводных средах, раздельно определять компоненты смеси в одном анализируемом растворе, например, раздельно определять хлорид- и иодид-ионы при аргентометрическом титровании.

Методами потенциометрического титрования анализируют многие лекарственные вещества, например, аскорбиновую кислоту, сульфамидные препараты, барбитураты, алкалоиды и др.

Основателем кондуктометрического анализа считается немецкий физик и физико-химик Ф.В.Г. Кольрауш (1840-1910), который впервые в 1885 г. предложил уравнение, устанавливающее связь между электропроводностью растворов сильных электролитов и их концентрацией. В

середине 40-х гг. XX в. был разработан метод высокочастотного кондуктометрического титрования. С начала 60-х гг. XX в. стали использовать кондуктометрические детекторы в жидкостной хроматографии.

1 Принцип метода. Основные понятия

Кондуктометрический анализ (кондуктометрия) основан на использовании зависимости между электропроводностью (электрической проводимостью) растворов электролитов и их концентрацией.

Об электропроводности растворов электролитов - проводников второго рода - судят на основании измерения их электрического сопротивления в электрохимической ячейке, которая представляет собой стеклянный сосуд (стакан) с двумя впаянными в него электродами, между которыми и находится испытуемый раствор электролита. Через ячейку пропускают переменный электрический ток. Электроды чаще всего изготовляют из металлической платины, которую для увеличения поверхности электродов покрывают слоем губчатой платины путем электрохимического осаждения из растворов платиновых соединений (электроды из платинированной платины).

Во избежание осложнений,связанных с процессами электролиза и поляризации, кондуктометрические измерения проводят в переменном электрическом поле. Электрическое сопротивление R слоя раствора электролита между электродами, как и электрическое сопротивление проводников первого рода, прямо пропорционально длине (толщине) l этого слоя и обратно пропорционально площади S поверхности электродов:

R= ρ lS lkS

где коэффициент пропорциональности р называют удельным электрическим сопротивлением, а обратную величину к = 1/р - удельной электропроводностью (удельной электрической проводимостью). Так как электрическое сопротивление R измеряют в омах, а толщину l слоя раствора электролита - в см, площадь S поверхности электродов - в см2, то удельную электропроводность к измеряют в единицах Ом-1 см-1, или, поскольку Ом-1 - это сименс (См), то - в единицах См см-1.

По физическому смыслу удельная электропроводность - это электрическая проводимость слоя электролита, находящегося между сторонами куба с длиной сторон 1 см, численно равная току, проходящему через слой раствора электролита с площадью поперечного сечения 1 см2 при градиенте приложенного электрического потенциала 1 В/см.

Удельная электропроводность зависит от природы электролита и растворителя, от концентрации раствора, от температуры.

С увеличением концентрации раствора электролита его удельная электропроводность вначале возрастает, затем проходит через максимум, после чего уменьшается. Такой характер изменения удельной электропроводности обусловлен следующими причинами. Вначале с увеличением концентрации электролита возрастает число ионов - токпереносящих частиц - как для сильных, так и для слабых электролитов. Поэтому электропроводность раствора (проходящий через него электрический ток) повышается. Затем по мере роста концентрации раствора увеличиваются его вязкость (понижающая скорости движения ионов) и электростатические взаимодействия между ионами, что препятствует возрастанию электрического тока и при достаточно больших концентрациях способствует его уменьшению.

В растворах слабых электролитов с ростом концентрации понижается степень диссоциации молекул электролита, что приводит к уменьшению числа ионов - токпроводящих частиц - и к понижению удельной электропроводности. В растворах сильных электролитов при высоких концентрациях возможно образование ионных ассоциатов (ионных двойников, тройников и т.п.), что также благоприятствует падению электропроводности.

Удельная электропроводность растворов электролитов увеличивается с ростом температуры вследствие понижения вязкости растворов, что приводит к повышению скорости движения ионов, а для слабых электролитов - также и к увеличению степени их ионизации (диссоциации на ионы). Поэтому количественные кондуктометрические измерения необходимо проводить при постоянной температуре, термостатируя кондуктометрическую ячейку.

Кроме удельной электропроводности в кондуктометрии используют эквивалентную электропроводность X и молярную электропроводность р. По физическому смыслу эквивалентная электропроводность X - это электрическая проводимость слоя раствора электролита толщиной 1 см, находящегося между одинаковыми электродами с такой площадью, чтобы объем раствора электролита, заключенного между ними, содержал 1 г-экв растворенного вещества. При этом за молярную массу эквивалента принимается молярная масса одинаковых частиц с единичным зарядовым числом («зарядом»), например,

Н+, Br - , 12Са2+, 13Fe3+ и т.д.

Эквивалентная электропроводность увеличивается с уменьшением концентрации раствора электролита. Максимальное значение эквивалентной электропроводности достигается при бесконечном разбавлении раствора. Эквивалентная электропроводность, как и удельная, возрастает с повышением температуры. Эквивалентная электропроводность X связана с удельной электропроводностью к соотношением (20):

λ= 1000 kc

В прямой кондуктометрии концентрацию вещества в анализируемом растворе определяют по результатам измерений удельной электропроводности этого раствора. При обработке данных измерений используют два метода: расчетный метод и метод градуировочного графика.

Расчетный метод. В соответствии с уравнением (10.20) молярная концентрация эквивалента с электролита в растворе может быть рассчитана, если известны удельная электропроводность к и эквивалентная электропроводность

: c = 1000 kλ

Удельную электропроводность определяют экспериментально на основании измерения электрического сопротивления термостатированной кондуктометрической ячейки.

Эквивалентная электропроводность раствора λ равна сумме подвижностей катиона λ+ и аниона Х λ -:

λ = λ + + λ-

Если подвижности катиона и аниона известны, то концентрацию можно рассчитать по формуле (24):

c = 1000 kλ + + λ-

Так поступают при определении методом прямой кондуктометрии концентрации малорастворимого электролита в его насыщенном растворе (сульфаты кальция, бария; галогениды серебра и др.). Метод градуировочного графика. Готовят серию эталонных растворов, каждый из которых содержит точно известную концентрацию определяемого вещества, измеряют их удельную электропроводность при постоянной температуре в термостатируемой кондуктометрической ячейке. По полученным данным строят градуировочный график, откладывая по оси абсцисс концентрацию эталонных растворов, а по оси ординат - значения удельной электропроводности. В соответствии с уравнением (24) построенный график в относительно небольшом диапазоне изменения концентраций обычно представляет собой прямую линию.

В широком интервале изменения концентраций, когда подвижности катиона и аниона, входящие в уравнение (24), могут заметно изменяться, наблюдаются отклонения от линейной зависимости.

Затем строго в тех же условиях измеряют удельную электропроводность к(Х) определяемого электролита в анализируемом растворе с неизвестной концентрацией с(Х) и по графику находят искомую величину с(Х).

Так определяют, например, содержание бария в баритовой воде - насыщенном растворе гидроксида бария.

Применение прямой кондуктометрии. Методу прямой кондуктометрии присущи простота, высокая чувствительность. Однако метод малоселективен.

Прямая кондуктометрия имеет ограниченное применение в анализе. Она используется для определения растворимости малорастворимых электролитов, для контроля качества дистиллированной воды и жидких пищевых продуктов (молока, напитков и др.), для определения общего содержания солей в минеральной, морской, речной воде и в некоторых других случаях.

3 Кондуктометрическое титрование

При кондуктометрическом титровании за ходом титрования следят по изменению электропроводности анализируемого раствора, находящегося в кондуктометрической ячейке между двумя инертными электродами (обычно из платинированной платины). По полученным данным вычерчивают кривую кондуктометрического титрования, отражающую зависимость электропроводности титруемого раствора от объема прибавленного титранта. Конечную точку титрования находят чаще всего экстраполяцией участков кривой титрования в области изменения ее наклона.При этом не требуется применение индикаторов, изменяющих окраску вблизи ТЭ.

В кондуктометрическом титровании используют различные типы реакций: кислотно-основные, окислительно-восстановительные, осадительные, процессы комплексообразования. Применение кондуктометрического титрования. Метод кондуктометрического титрования обладает рядом достоинств. Титрование можно проводить в мутных, окрашенных, непрозрачных средах. Чувствительность метода довольно высокая - до ~10~* моль/л; ошибка определения составляет от 0,1 до 2%. Анализ можно автоматизировать. К недостаткам метода относится малая селективность. Понятие о высокочастотном (радиочастотном) кондуктометрическом титровании. За ходом титрования следят с помощью модифицированной переменно-токовой кондуктометрической техники, в которой частота переменного тока может достигать порядка миллиона колебаний в секунду. Обычно электроды помещают (накладывают) на внешней стороне сосуда (кондуктометрической ячейки) для титрования, так что они не соприкасаются с титруемым раствором.

По результатам измерений вычерчивают кривую кондуктометрического титрования. Конечную точку титрования находят экстраполяцией участков кривой титрования в области изменения ее наклона.

ГЛАВА 4. КОНДУКТОМЕТРИЧЕСКИЙ АНАЛИЗ (КОНДУКТОМЕТРИЯ)

4.1 Сущность метода

Полярографический анализ (полярография) основан на использовании следующих зависимостей между электрическими параметрами электрохимической (в данном случае - полярографической) ячейки, к которой прилагается внешний потенциал, и свойствами содержащегося в ней анализируемого раствора.

а)В качественном полярографическом анализе используют связь между величиной приложенного на микроэлектроде внешнего электрического потенциала, при котором наблюдается восстановление (или окисление) анализируемого вещества на микроэлектроде в данных условиях, и природой восстанавливающегося (или окисляющегося) вещества.

б)В количественном полярографическом анализе используют связь между величиной диффузионного электрического тока, и концентрацией определяемого (восстанавливающегося или окисляющегося) вещества в анализируемом растворе. Электрические параметры - величину приложенного электрического потенциала и величину Диффузионного тока - определяют при анализе получаемых поляризационных, или вольт-амперных, кривых, отражающих графически зависимость электрического тока в полярографической ячейке от величины приложенного потенциала микроэлектрода. Поэтому полярографию иногда называют прямой вольтамперометрией.

Классический полярографический метод анализа с применением ртутного капающего (капельного) электрода был разработан и предложен в 1922 г. чешским ученым Ярославом Гейровским (1890-1967), хотя сам ртутный капающий электрод применялся чешским физиком Б. Кучерой еще в 1903 г. В 1925 г. Я. Гейровский и М. Шиката сконструировали первый полярограф, позволивший автоматически регистрировать поляризационные кривые. В дальнейшем были разработаны различные модификации полярографического метода.

Величина среднего диффузионного тока iD определяется уравнением Ильковича (25):

где К- коэффициент пропорциональности, с - концентрация (ммоль/л) полярографически активного вещества-деполяризатора; iD измеряют в микроамперах как разность между предельным током и остаточным током.

Коэффициент пропорциональности К в уравнении Ильковича зависит от целого ряда параметров и равен

K=607nD12m23τ16

где п - число электронов, принимающих участие в электродной окислительно-восстановительной реакции; D - коэффициент диффузии восстанавливающегося вещества (см2/с); т - масса ртути, вытекающей из капилляра в секунду (мг); т - время образования (в секундах) капли ртути при потенциале полуволны (обычно оно составляет 3-5 с).

Так как коэффициент диффузии D зависит от температуры, то и коэффициент пропорциональности К в уравнении Ильковича изменяется при изменении температуры. Для водных растворов в температурном интервале 20-50 °С коэффициент диффузии полярографичски активных веществ-деполяризаторов увеличивается примерно на 3% при росте температуры на один градус, что и приводит к повышению среднего диффузионного тока iD на ~1-2%. Поэтому полярографирование проводят при постоянной температуре, термостатируя полярографическую ячейку обычно при 25 ± 0,5 °С.

Масса ртути т и время каплеобразования т зависят от характеристик ртутного капающего электрода и высоты столбика ртути в капилляре и в резервуаре, связанном с капилляром. Стеклянный капилляр ртутного капающего микроэлектрода обычно имеет внешний диаметр 3-7 мм, внутренний - от 0,03 до 0,05 мм, длину 6-15 см. Высота ртутного столбика от нижнего конца капилляра до верхнего уровня поверхности ртути в резервуаре составляет 40-80 см; Содержание индифферентного электролита в анализируемом полярографируемом растворе должно примерно в 100 раз превышать содержание определяемого вещества-деполяризатора, причем ионы фонового электролита не должны разряжаться в условиях проведения полярографирования до разряда полярографически активного вещества.

Полярографирование проводят с использованием в качестве растворителя воды, водно-органических смесей (вода - этанол, вода - ацетон, вода - диметилформамид и др.) и неводных сред (этанол, ацетон, диметилформамид, диметилсульфоксид и т.д.).

До начала полярографирования через анализируемый раствор пропускают ток инертного газа (азота, аргона и др.) для удаления растворенного кислорода, который также дает полярографическую волну вследствие восстановления по схеме:

2Н+ + 2е = Н202

Н202 + 2Н+ + 2е = 2Н20

Иногда - в случае щелочных растворов - вместо пропускания тока инертного газа в анализируемый раствор прибавляют небольшое количество активного восстановителя - сульфита натрия, метола, которые связывают растворенный кислород, реагируя с ним.

4.2 Количественный полярографический анализ

Из изложенного выше следует, что количественный полярографический анализ основан на измерении диффузионного тока iD как функции концентрации определяемого полярографически активного вещества- деполяризатора в полярографируемом растворе.

При анализе получаемых полярограмм концентрацию определяемого вещества находят методами градуировочного графика, добавок стандарта, стандартных растворов.

а)Метод градуировочного графика используют чаще всего. По этому методу готовят серию стандартных растворов, каждый из которых содержит точно известную концентрацию с определяемого вещества.

Проводят полярографирование каждого раствора (после продувания через него тока инертного газа) в одинаковых условиях, получают полярограммы и находят значения Е12 (одинаковые для всех растворов) и диффузионного тока iD (разные для всех растворов). По полученным данным строят градуировочный график в координатах iD-c, представляющий собой обычно прямую линию в соответствии с уравнением Ильковича.

Затем проводят полярографирование анализируемого раствора с неизвестной концентрацией с(Х) определяемого вещества, получают полярограмму, измеряют величину диффузионного тока iD (Х) и по градуировочному графику находят концентрацию с(Х).

б)Метод добавок стандарта. Получают полярограмму анализируемого раствора с неизвестной концентрацией с(Х) определяемого вещества и находят величину диффузионного тока, т.е. высоту h полярограммы. Затем к анализируемому раствору прибавляют точно известное количество определяемого вещества, повышающее его концентрацию на

величину c(st), снова проводят полярографирование и находят новое значение диффузионного тока - высоту полярограммы h + h.

В соответствии с уравнением Ильковича (25) можно написать:

h = Kc(X),h = K c(st),

откуда

hh = с(Х)c(st) и с(Х) = hhc(st)

в)Метод стандартных растворов. В одинаковых условиях проводят полярографирование двух растворов: анализируемого раствора с неизвестной концентрацией с(Х) и стандартного раствора с точно известной концентрацией c(st) определяемого вещества. На полученных полярограммах находят высоты полярографических волн h(Х) и h(st), отвечающие диффузионному току при концентрациях соответственно с(Х) и c(st). Согласно уравнению Ильковича (25) имеем:

(Х) = Кс(Х), h(st) = Kc(st),

Стандартный раствор готовят так, чтобы его концентрация была бы как можно ближе к концентрации определяемого раствора. При этом условии ошибка определения минимизируется.

3 Применение полярографии

Применение метода. Полярография используется для определения малых количеств неорганических и органических веществ. Разработаны тысячи методик количественного полярографического анализа. Предложены способы полярографического определения практически всех катионов металлов, ряда анионов (бромат-, иодат-, нитрат-, перманганат-ионов), органических соединений различных классов, содержащих диазогруппы, карбонильные, пероксидные, эпоксидные группы, двойные углерод-углеродные связи, а также связи углерод-галоген, азот-кислород, сера-сера.

Метод - фармакопейный, применяется для определения салициловой кислоты, норсульфазола, витамина Вь алкалоидов, фолиевой кислоты, келлина в порошке и в таблетках, никотинамида, пиридоксина гидрохлорида, препаратов мышьяка, гликозидов сердечного действия, а также кислорода и различных примесей в фармацевтических препаратах.

Метод обладает высокой чувствительностью (до 10"5-10Т6 моль/л); селективностью; сравнительно хорошей воспроизводимостью результатов (до ~2%); широким диапазоном применения; позволяет анализировать смеси веществ без их разделения, окрашенные растворы, небольшие объемы растворов (объем полярографической ячейки может составлять всего 1 мл); вести анализ в потоке раствора; автоматизировать проведение анализа."

К недостаткам метода относятся токсичность ртути, ее довольно легкая окисляемость в присутствии веществ-окислителей, относительная сложность используемой аппаратуры.

Другие варианты полярографического метода. Помимо описанной выше классической полярографии, использующей капающий ртутный микроэлектрод с равномерно возрастающим на нем электрическим потенциалом при постоянном электрическом токе, разработаны другие варианты полярографического метода - производная, дифференциальная, импульсная, осциллографическая полярография; переменно-токовая полярография - также в разных вариантах.

ГЛАВА 5. АМПЕРОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ

Сущность метода. Амперометрическое титрование (потенцио-статическое поляризационное титрование) - разновидность вольтамперометрического метода (наряду с полярографией). Оно основано на измерении величины тока между электродами электрохимической ячейки, к которым приложено некоторое напряжение, как функции объема прибавленного титранта. В соответствии с уравнением Ильковича (25):

диффузионный ток iD в полярографической ячейке тем больше, чем выше концентрация с полярографически активного вещества. Если при прибавлении титранта в анализируемый титруемый раствор, находящийся в полярографической ячейке, концентрация такого вещества уменьшается или увеличивается, то соответственно падает или возрастает и диффузионный ток. Точку эквивалентности фиксируют по резкому изменению падения или роста диффузионного тока, что отвечает окончанию реакциит титруемого вещества с титрантом.

Различают амперометрическое титрование с одним поляризуемым электродом, называемое также титрованием по предельному току, полярографическим или поляриметрическим титрованием, и амперометрическое титрование с двумя одинаковыми поляризуемыми электродами, или титрование «до полного прекращения тока», биамперометрическое титрование.

Амперометрическое титрование с одним поляризуемым электродом. Оно основано на измерении тока в полярографической ячейке в зависимости от количества прибавленного титранта при постоянном внешнем потенциале на микроэлектроде, несколько превышающем потенциал полуволны на вольт-амперной кривой титруемого вещества X или титранта Т. Обычно выбранный внешний потенциал соответствует области предельного тока на полярограмме X или Т. Титрование ведут на установке, состоящей из источника постоянного тока с регулируемым напряжением, к которому последовательно присоединены гальванометр и полярографическая ячейка для титрования. Рабочим (индикаторным) электродом ячейки может служить ртутный капающий электрод, неподвижный или вращающийся платиновый либо графитовый электрод. При использовании твердых электродов необходимо перемешивание раствора во время титрования. В качестве электрода сравнения применяют хлор-серебряный или каломельный электроды. Фоном служат, в зависимости от условий, различные полярографически неактивные при данном потенциале электролиты (HN03, H2S04, NH4NO3 и др.).

Вначале получают вольт-амперные кривые (полярограммы) для X и Т в тех же условиях, в которых предполагается проведение амперометрического титрования. На основании рассмотрения этих кривых выбирают значение потенциала, при котором достигается величина предельного тока полярографически активных X или Т. Выбранное значение потенциала поддерживают постоянным в течение всего процесса титрования.

Используемая для амперометрического титрования концентрация титранта Т должна примерно в 10 раз превышать концентрацию X; при этом практически не требуется вводить поправку на разбавление раствора во время титрования. В остальном соблюдают все те условия, которые требуются для получения полярограмм. Требования к термостатированию - менее строгие, чем при прямом полярографировании, поскольку конец титрования определяется не по абсолютному значению диффузионного тока, а по резкому изменению его величины.

В полярографическую ячейку вносят анализируемый раствор, содержащий X, и прибавляют небольшими порциями титрант Т, измеряя каждый раз ток i. Величина тока i зависит от концентрации полярографически активного вещества. В точке эквивалентности величина i резко изменяется.

По результатам амперометрического титрования строят кривые титрования. Кривая амперометрического титрования - это графическое представление изменения величины тока / в зависимости от объема V прибавленного титранта. Кривая титрования строится в координатах ток i - объем V прибавленного титранта Т (или степень оттитрованности).

В зависимости от природы титруемого вещества X и титранта Т кривые амперометрического титрования могут быть различного типа.

Биамперометрическое титрование ведут при энергичном перемеши-вании раствора на установке, состоящей из источника постоянного тока с потенциометром, с которого регулируемая разность потенциалов (0,05- 0,25 В) подается через чувствительный микроамперметр на электроды электрохимической ячейки. В последнюю перед проведением титрования вносят титруемый раствор и прибавляют порциями титрант до резкого прекращения или появления тока, о чем судят по показанию микроамперметра.

Используемые в электрохимической ячейке платиновые электроды периодически очищают, погружая их на ~30 минут в кипящую концентрированную азотную кислоту, содержащую добавки хлористого железа, с последующим промыванием электродов водой.

Биамперометрическое титрование - фармакопейный метод; применяется в иодометрии, нитритометрии, акваметрии, при титровании в не водных средах.

ГЛАВА 6. КУЛОНОМЕТРИЧЕСКИЙ АНАЛИЗ (КУЛОНОМЕТРИЯ)

1 Принципы метода

электрохимический кондуктометрия титрование кулонометрия

Кулонометрический анализ (кулонометрия) основан на использовании зависимости между массой т вещества, прореагировавшего при электролизе в электрохимической ячейке, и количеством электричества Q, прошедшего через электрохимическую ячейку при электролизе только этого вещества. В соответствии с объединенным законом электролиза М Фарадея масса т (в граммах) связана с количеством электричества Q (в кулонах) соотношением (27)

где М - молярная масса вещества, прореагировавшего при электролизе, г/моль; п - число электронов, участвующих в электродной реакции;

96487 Кл/моль - число Фарадея.

Количество электричества Q (в Кл), прошедшее при электролизе через электрохимическую ячейку, равно произведению электрического тока i (в А) на время электролиза τ (в с):

Если измерено количество электричества Q, то согласно (27) можно рассчитать массу т. Это справедливо в том случае, когда все количество электричества Q, прошедшее при электролизе через электрохимическую ячейку, израсходовано только на электролиз данного вещества; побочные процессы должны быть исключены. Другими словами, выход (эффективность) по току должен быть равен 100%.

Поскольку в соответствии с объединенным законом электролиза М. Фарадея для определения массы т (г) прореагировавшего при электролизе вещества необходимо измерить количество электричества Q, затраченное на электрохимическое превращение определяемого вещества, в кулонах, то метод и назван кулонометрией. Главная задача кулонометрических измерений - как можно более точно определить количество электричества Q.

Кулонометрический анализ проводят либо в амперостатическом (гальваностатическом) режиме, т.е. при постоянном электрическом токе i=const, либо при контролируемом постоянном потенциале рабочего электрода (потенциостатическая кулонометрия), когда электрический ток изменяется (уменьшается) в процессе электролиза.

В первом случае для определения количества электричества Q достаточно как можно более точно измерить время электролиза т(с), постоянный ток /(А) и рассчитать величину Q по формуле (10.28).

Во втором случае величину Q определяют либо расчетным способом, либо с помощью химических кулонометров.

Различают прямую кулонометрию и косвенную кулонометрию (кулонометрическое титрование).

Сущность метода. Прямую кулонометрию при постоянном токе применяют редко. Чаще используют кулонометрию при контролируемом постоянном потенциале рабочего электрода или прямую потенциостатическую кулонометрию.

В прямой потенциостатической кулонометрии электролизу подвергают непосредственно определяемое вещество. Измеряют количество электричества, затраченное на электролиз этого вещества, и по уравнению рассчитывают массу т определяемого вещества.

В процессе электролиза потенциал рабочего электрода поддерживают постоянным, Е=const, для чего обычно используют приборы - потенциостаты. Постоянное значение потенциала Е выбирают предварительно на основании рассмотрения вольт-амперной (поляризационной) кривой, построенной в координатах ток i - потенциал Е (как это делают в полярографии), полученной в тех же условиях, в которых будет проводиться электролиз. Обычно выбирают значение потенциала Е, соответствующее области предельного тока для определяемого вещества и несколько превышающее его потенциал полуволны Е12 (на -0,05-0,2 В). При этом значении потенциала, как и в полярографии, фоновый электролит не должен подвергаться электролизу.

По мере протекания процесса электролиза при постоянном потенциале электрический ток в ячейке уменьшается, так как понижается концентрация электроактивного вещества, участвующего в электродной реакции. При этом электрический ток уменьшается со временем по экспо-ненциальному закону от начального значения i0 в момент времени т = О до значения i в момент времени т:

где коэффициент к зависит от природы реакции, геометрии электрохимической ячейки, площади рабочего электрода, коэффициента диффузии определяемого вещества, скорости перемешивания раствора и его объема.

Способы определения количества электричества, прошедшего через раствор, в прямой потепциостатической кулонометрии. Величину Q можно определить расчетными способами либо с помощью химического кулонометра.

а)Расчет вечичины Q по площади под кривой зависимости i от т. Для определения Q без заметной ошибки способ требует практически полного завершения процесса электролиза, т.е. длительного времени. На практике, как уже отмечалось выше, измеряют площадь при значении т, соответствующем

0,001i0 (0,1% от i0).

б)Расчет величины Q на основе зависимости In / от т. В соответствии имеем:

Q = 0∞i0e-kτdτ=i00∞e-kτdτ=i0k

Поскольку

∞i0e-kτdτ= - k-1 e-k∞-e-k0= k-10-1=k-1

Применение прямой кулонометрии. Метод обладает высокими селективностью, чувствительностью (до 10~8-10~9 г или до ~10~5 моль/л), воспроизводимостью (до ~1-2%), позволяет определять содержание микропримесей. К недостаткам метода относятся большие трудоемкость и длительность проведения анализа, необходимость наличия дорогостоящей аппаратуры.

Прямую кулонометрию можно применять для определения - при катодном восстановлении - ионов металлов, органических нитро- и галогенпроизводных; при анодном окислении - хлорид-, бромид-, иодид-,тиоцианат-анионы, ионы металлов в низших степенях окисления при переводе их в более высокие состояния окисления, например: As(IH) -> As(V),Cr(II) -> Cr(III), Fe(II) -» Fe(III), T1(I) -> Tl(III) и т.д.

В фармацевтическом анализе прямую кулонометрию применяют для определения аскорбиновой и пикриновой кислот, новокаина, оксихинолина и в некоторых других случаях.

Как отмечалось выше, прямая кулонометрия довольно трудоемка и продолжительна. Кроме того, в ряде случаев начинают заметно протекать побочные процессы еще до завершения основной электрохимической реакции, что снижает выход по току и может привести к значительным ошибкам анализа. Поэтому чаще применяют косвенную кулонометрию - кулонометрическое титрование.

3 Кулонометрическое титрование

Сущность метода. При кулонометрическом титровании определяемое вещество X, находящееся в растворе в электрохимической ячейке, реагирует с «титрантом» Т - веществом, непрерывно образующемся (генерируемом) на генераторном электроде при электролизе вспомогательного вещества, также присутствующего в растворе. Окончание титрования - момент, когда все определяемое вещество X полностью прореагирует с генерируемым «титрантом» Т, фиксируют либо визуально индикаторным методом, вводя в раствор соответствующий индикатор, меняющий окраску вблизи ТЭ, либо с помощью инструментальных методов - потенциометрически, амперометрически, фотометрически.

Таким образом, при кулонометрическом титровании титрант не прибавляется из бюретки в титруемый раствор. Роль титранта играет вещество Т, непрерывно генерируемое при электродной реакции на генераторном электроде. Очевидно, имеется аналогия между обычным титрованием, когда титрант вводится извне в титруемый раствор и по мере его прибавления реагирует с определяемым веществом, и генерацией вещества Т, которое по мере своего образования также реагирует с определяемым веществом. Поэтому рассматриваемый метод и получил название «кулонометрическое титрование».

Кулонометрическое титрование проводят в амперостатическом (гальваностатическом) или в потенциостатическом режиме. Чаще кулонометрическое титрование проводят в амперостатическом режиме, поддерживая электрический ток постоянным в течение всего времени электролиза.

Вместо объема прибавленного титранта в кулонометрическом титровании измеряют время т и ток i электролиза. Процесс образования вещества Т в кулонометрической ячейке во время электролиза называется генерация титранта.

Кулонометрическое титрование при постоянном токе. При кулонометрическом титровании в амперостатическом режиме (при посто-янном токе) измеряют время т, в течение которого проводился электролиз, и количество электричества Q, израсходованное при электролизе, рассчитывают по формуле, после чего находят массу определяемого вещества X по соотношению.

Так, например, стандартизацию раствора хлороводородной кислоты НС1 методом кулонометрического титрования проводят путем титрования ионов водорода Н30+ стандартизуемого раствора, содержащего НС1, электрогенерируемыми на платиновом катоде гидроксид-ионами ОН- при электролизе воды:

Н20 + 2е = 20Н- + Н2

Образовавшийся титрант - гидроксид-ионы - реагирует с ионамиН30+ в растворе:

Н30+ + ОН- = 2Н20

Титрование ведут в присутствии индикатора фенолфталеина и прекращают при появлении светло-розовой окраски раствора. Зная величину постоянного тока i (в амперах) и время т (в секундах), затраченное на титрование, рассчитывают по формуле (28) количество электричества Q (в кулонах) и по формуле (27) - массу (в граммах) прореагировавшей НС1, содержавшуюся в аликвоте стандартизуемого раствора НС1, внесенного в кулонометрическую ячейку (в генераторный сосуд).

Условия проведения кулонометрического титрования. Из вышеизложенного следует, что условия проведения кулонометрического титрования должны обеспечить 100%-ный выход по току. Для этого необходимо выполнять, по крайней мере, следующие требования.

а)Вспомогательный реагент, из которого на рабочем электроде гнерируется титрант, должен присутствовать в растворе в большом избытке по отношению к определяемому веществу (~ 1000-кратный избыток). В этих условиях обычно устраняются побочные электрохимические реакции, основная из которых - это окисление или восстановление фонового электролита, например, ионов водорода:

Н+ + 2е = Н2

б)Величина постоянного тока i=const при проведении электролиза должна быть меньше величины диффузионного тока вспомогательного реагента во избежание протекания реакции с участием ионов фонового электролита.

в)Необходимо как можно точнее определять количество электричества, израсходованное при проведении электролиза, для чего требуется точно фиксировать начало и конец отсчета времени и величину тока электролиза.

Кулонометрическое титрование при постоянном потенциале.

Потенциостатический режим в кулонометрическом титровании используется реже.

Кулонометрическое титрование в потенциостатическом режиме ведут при постоянном значении потенциала, соответствующем потенциалу разряда вещества на рабочем электроде, например, при катодном восстановлении катионов металлов М"* на платиновом рабочем электроде. По мере протекания реакции потенциал остается постоянным до тех пор, пока прореагируют все катионы металла, после чего он резко уменьшается, поскольку в растворе уже нет потенциалопределяющих катионов металла.

Применение кулонометрического титрования. В кулонометрическом титровании можно использовать все типы реакций титриметрического анализа: кислотно-основные, окислительно-восстановительные, осадительные, реакции комплексообразования.

Так, малые количества кислот можно определять кулонометрическим кислотно-основным титрованием электрогенерированными ОН--ионами, образующимися при электролизе воды на катоде:

Н20 + 2е = 20Н" + Н2

Можно титровать и основания ионами водорода Н+, генерируемыми на аноде при электролизе воды:

Н20-4е = 4Н+ + 02

При окислительно-восстановительном бромометрическом кулонометрическом титровании можно определять соединения мышьяка(Ш), сурьмы(Ш), иодиды, гидразин, фенолы и другие органические вещества. В роли титранта выступает электрогенерируемый на аноде бром:

ВГ -2е = Вг2

Осадительным кулонометрическим титрованием можно определять галогенид-ионы и органические серосодержащие соединения электрогенерированными катионами серебра Ag+, катионы цинка Zn2+ - электрогенерированными ферроцианид-ионами и т.д. Комплексонометрическое кулонометрическое титрование катионов металлов можно проводить анионами ЭДТА, электрогенерированными на катоде из комплексоната ртути(И).

Кулонометрическое титрование обладает высокой точностью, широким диапазоном применения в количественном анализе, позволяет определять малые количества веществ, малостойкие соединения (посколькуони вступают в реакции сразу же после их образования), например,меди(1), серебра(Н), олова(П), титана(Ш), марганца(Ш), хлора, брома и др.

К достоинствам метода относится также и то, что не требуются приготовление, стандартизация и хранение титранта, так как он непрерывно образуется при электролизе и сразу же расходуется в реакции с определяемым веществом.

ЗАКЛЮЧЕНИЕ

Электрохимические методы анализа основаны на процессах, протекающих на электродах или межэлектродном пространстве. Электрохимические методы анализа являются одними из старейших физико-химических методов анализа (некоторые описаны в конце 19 в.). Их достоинством является высокая точность и сравнительная простота, как оборудования, так и методики анализа. Высокая точность определяется весьма точными закономерностями, используемыми в электрохимических методах анализа, например, закон Фарадея. Большим удобством является то, что в них используют электрические воздействия, и то, что результат этого воздействия (отклик) тое получается в виде электрического сигнала.

Это обеспечивает высокую скорость и точность отсчета, открывает широкие возможности для автоматизации. Электрохимические методы анализа отличаются хорошей чувствительностью и селективностью, в ряде случаев их можно отнести к микроанализу, так как для анализа иногда достаточно менее 1 мл раствора. Инструментом их служит электрохимическая ячейка, представляющая собой сосуд с раствором электролита, в который погружены как минимум два электрода. В зависимости от решаемой задачи различными могут быть форма и материал сосуда, число и природа электродов, раствора, условия анализа (прилагаемое напряжение (ток) и регистрируемый аналитический сигнал, температура, перемешивание, продувка инертным газом и тому подобное). Определяемое вещество может входить как в состав электролита, заполняющего ячейку, так и в состав одного из электродов.

Электрохимические методы анализа играют большую роль в современном мире. В наше время особенно важна забота об экологии. С помощью этих методов можно определить содержание огромного количества различных органических и неорганических веществ. Сейчас они более эффективны для определения опасных веществ.

Электрохимические методы анализа основаны на измерении потенциалов, силы тока и других характеристик при взаимодействии анализируемого вещества с электрическим током.

Электрохимические методы делятся на три группы:

¨ методы, основанные на электродных реакциях, протекающих в отсутствии тока (потенциометрия);

¨ методы, основанные на электродных реакциях, протекающих под действием тока (вольтамперометрия, кулонометрия, электрогравиметрия);

¨ методы, основанные на измерениях без протекания электродной реакции (кондуктометрия – низкочастотное титрование и осциллометрия – высокочастотное титрование).

По приемам применения электрохимические методы классифицируются на прямые , основанные на непосредственной зависимости аналитического сигнала от концентрации вещества, и косвенные (установление точки эквивалентности при титровании).

Для регистрации аналитического сигнала необходимы два электрода – индикаторный и сравнения. Электрод, потенциал которого зависит от активности определяемых ионов, называется индикаторным . Он должен быстро и обратимо реагировать на изменение концентрации определяемых ионов в растворе. Электрод, потенциал которого не зависит от активности определяемых ионов и остается постоянным, называется электродом сравнения .

ПОТЕНЦИОМЕТРИЯ

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации ионов в растворе.

Метод был разработан в конце прошлого столетия, после того, как в 1889 г. Вальтер Нернст вывел уравнение, связывающее потенциал электрода с активностью (концентрацией веществ):

где – стандартный электродный потенциал, В; 0,059 – константа, включающая универсальную газовую постоянную (), абсолютную температуру и постоянную Фарадея (); – число электронов, принимающих участие в электродной реакции; и – активность окисленной и восстановленной форм вещества соответственно.

При погружении металлической пластинки в раствор, на границе металл-раствор устанавливается равновесие

Ме 0 ↔ Ме n+ + nē

и возникает электродный потенциал. Измерить этот потенциал нельзя, но можно измерить электродвижущую силу гальванического элемента.

Исследуемый гальванический элемент состоит из двух электродов, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостной контакт (цепь с переносом).

Электрод, потенциал которого зависит от активности определяемых ионов, называется индикаторным: Е= f(с). Электрод, потенциал которого не зависит от концентрации определяемых ионов и остается постоянным называется электродом сравнения . Его применяют для измерения потенциала индикаторного электрода.